irobot0

iRobot, tout le monde connait – en particulier par son robot aspirateur Roomba autonome, l’un des meilleurs modèles du marché, et un précurseur dans son domaine. Mais iRobot, c’est moins connu, c’est également une société de robotique militaire. C’est cette dernière activité qui vient d’être cédée au groupe Arlington Capital Partners, pour 45 millions de $.

La division militaire d’iRobot développe des robots d’exploration comme le 110 FirstLook (voir ci-dessous), un robot de reconnaissance léger, robuste, capable d’effectuer des missions de reconnaissance NRBC, de vérification de véhicule ou d’exploration d’un environnement rendu complexe par la présence de fumées, ou de débris.

irobot1

A l’autre extrémité du spectre, on peut également citer le robot 710 Kobra, capable de grimper des escaliers et de réaliser des missions de déminage sur tout terrain, par tous les temps. Ces robots sont fondés sur un socle commun : deux chenilles, une plate-forme capable d’héberger différentes charges utiles, et un second couple de chenilles (amovibles) sur l’avant, permettant de monter des escaliers ou d’escalader des obstacles.

irobot2

La cession de sa division militaire a pour objectif de permettre à iRobot de se consacrer totalement au domaine de la robotique grand public. La nouvelle société issue de l’opération et détenue à 100% par des capitaux privés sera donc totalement dédiée au monde de la défense et de la sécurité. Son directeur général sera Sean Bielat, un ancien officier des US Marines.

Cette annonce a au moins le mérite de clarifier les intentions de la société dans le domaine de la robotique militaire. D’autres entités, comme Boston Dynamics, ont des stratégies moins claires : rachetée par Google en décembre 2013, cette dernière société, créatrice de robots célèbres comme « Alpha Dog » ou « Cheetah »  n’a toujours pas précisé sa stratégie dans le monde de la défense. Malgré les intentions de Google de « stopper tout développement de Boston Dynamics dans le militaire » (une posture dictée par une volonté d’affichage vers le grand public), les contrats de développement avec le DoD américain se poursuivent. Et l’on ne compte plus les sociétés de robotique achetées par Google (aujourd’hui Alphabet) : Meka, Redwood Robotics, Schaft, Industrial Perception, … sans compter ses développements dans les véhicules autonomes.

Mais le débat sur Google et la robotique est biaisé par les SALA (systèmes d’armes létaux autonomes), un concept qui pollue en fait la totalité du débat sur la robotique militaire. Il suffit de regarder les activités de iRobot, de Nexter Robotics ou de Tecdron pour constater que la robotique militaire, c’est aujourd’hui autre chose que des systèmes d’armes. Bon, même si iRobot avait déjà fait des essais d’armement de son robot 710 avec le concours de Metal Storm.

irobot4

Compte tenu de l’historique dans le domaine, nul doute que la DARPA constituera une source de financement importante pour la nouvelle société issue d’iRobot. Car les défis sont loin d’être résolus aujourd’hui : un robot a encore du mal à ouvrir une porte ou évoluer de manière complètement autonome dans un environnement non structuré, complexe et changeant.

Le nom de la nouvelle société sera révélé à l’issue de la transaction, dont la phase légale doit encore durer 90 jours.

nesd1

De retour de Washington (d’où le rythme un peu lent cette semaine de mes articles), coup de projecteur sur une initiative de la DARPA (Defense Advanced Research Projects Agency, encore elle), le projet NESD pour Neural Engineering System Design. Il ne s’agit ni plus ni moins que de développer une interface cérébrale permettant de transférer des données entre le cerveau et le monde numérique.

Pour ce faire, la DARPA dispose d’un « petit » budget à son échelle (60 millions de $ sur 4 ans, à comparer à un budget annuel global de près de 2.9 milliards de $, pour information). L’idée est de développer un implant cérébral, de la taille d’une pièce de 5 centimes d’euros et d’une épaisseur double, permettant de traduire les communications électrochimiques du cerveau en signaux numériques.

nesd2

Alors que les implants thérapeutiques existants se limitent à 100 canaux de communication, le nouvel implant devrait permettre de communiquer simultanément avec 1 million de neurones. Les défis technologiques sont nombreux : en neurobiologie évidemment, mais aussi dans le domaine du calcul, de l’énergie, et du logiciel (transcodage, compression, analyse du signal, etc…).

Quant aux applications, elles vont de la restauration de capacités perdues suite à une lésion cérébrale (audition, vision, gestes…) au traitement rapide de l’information, et au contrôle/commande de systèmes complexes par interface cérébrale.

nesd3

Le projet, ambitieux, fait partie du programme « Brain initiative » lancé par le président Barack Obama, et qui, en ce qui concerne la DARPA, agrège plusieurs programmes de recherche comme le projet ElectRx visant à conférer au corps humain des capacités d’auto-guérison accrues, par la neurostimulation modulaire des organes internes (!), le projet PREVENT pour comprendre la physique des blessures neurologiques et en limiter les effets, ou encore le projet HAPTIX de développement d’interfaces tactiles proprioceptives. Pour une vision globale, voir la page dédiée sur le site de la DARPA. En ce qui concerne le projet Brain Initiative, vous pouvez en savoir plus sur le site de la Maison Blanche.

nesd4

Le projet NESD sera orienté vers le développement d’interfaces prioritairement vers le cortex visuel primaire et le cortex auditif – outre les applications, il s’agit des zones du cerveau sur lesquelles on dispose aujourd’hui d’information et de connaissances importantes, et qui sont physiquement accessibles pour l’implantation d’un dispositif. Le programme sera organisé en deux domaines techniques (TA pour Technical Areas) :

  • TA1 : transduction neurale et algorithmes – il s’agit de mettre en place les algorithmes et techniques permettant d’élaborer le design du système NESD
  • TA2 : Hardware, prototypage et fabrication (ainsi que les tests et validations) de la plate-forme NESD.

La DARPA cherche aujourd’hui à mettre en place un consortium industriel multidisciplinaire de travail sur le programme et organise une journée d’information dont vous trouverez le détail ici. Les français y sont d’ailleurs bien représentés.

 

spray0

Bon, je l’accorde, le titre est accrocheur. Mais il est parfaitement exact : des chercheurs du Raytheon-UMass Lowell Research Institute (RURI) ont en effet annoncé avoir développé une nano-encre ferromagnétique, apposable en spray, et capable de constituer des antennes radars imprimées.

Avant de parler furtivité, quelques explications. Une nano-encre ferromagnétique est constituée de nanoparticules, capables de s’orienter lorsqu’un courant électrique est appliqué. Dans ce cas, il s’agit d’une encre diffusable en spray, que l’on peut donc vaporiser suivant un motif donné, par exemple pour former une antenne. Ce que l’on appelle un « phased array radar » (pour la traduction en français, je n’ai trouvé que radar à réseau en commande de phase – ou radar à balayage). Le principe est de constituer un réseau d’antennes élémentaires alimentées avec des signaux dont la phase est ajustée de façon à obtenir le diagramme de rayonnement voulu. Cela permet en particulier de suivre des cibles très mobiles.

spray1

Le souci : ces radars sont volumineux, lourds, coûteux, consommateurs d’énergie et demandent des structures de portage qui diminuent la furtivité. D’où l’idée d’utiliser une nano-encre pour imprimer littéralement l’antenne, sur une surface quelconque, la connexion avec l’électronique de traitement se faisant sous la surface.

spray2

Le laboratoire RURI a en effet développé une technologie d’impression par spray consistant à vaporiser une nano-encre à 7mm du support, à travers une grille permettant de créer un motif de réseau.

spray3

On obtient ainsi une antenne radar directement imprimée sur n’importe quelle structure : tourelle de char, coque de bateau (avec quelques bémols en cours de résolution dus à l’eau salée), mais aussi directement sur la structure d’un avion, sans en dégrader les performances aérodynamiques.

Mais au-delà du développement de radars, on peut imaginer également (et c’est ce qu’on fait les chercheurs du RURI) utiliser cette technologie pour réaliser de la furtivité active. Explication : la furtivité passive, c’est la faculté d’une structure à se rendre invisible aux radars, en diminuant sa SER ou signature équivalente radar (donc la surface plane qui renverrait la même énergie que la structure considérée). Pour cela, on utilise une combinaison de matériaux absorbants et de formes géométriques permettant d’absorber et/ou de renvoyer les ondes radar dans d’autres directions que celles de l’émetteur. Ainsi, le F22 Raptor aurait une SER équivalente à celle d’un oiseau. Mais cela n’est pas vrai pour tous les types de radar (notamment des radars basse fréquence), et pour toutes les positions possibles de l’avion…

spray4

La furtivité active, quant à elle, consiste à traiter activement les signaux reçus pour les renvoyer sous une forme qui ne permettra pas au système de détection d’identifier la menace. Une antenne imprimée sur la structure d’un avion ou d’une frégate pourrait permettre de traiter les signaux radars quelle que soit leur fréquence d’émission, et sur tous les angles possibles (puisque l’on peut moduler le traitement des signaux reçus en fonction de la position de la cible). Ce faisant, on surmonte les difficultés de la furtivité passive, tout en fournissant une technologie radar furtive, puisque ne nécessitant pas de structure porteuse.

Une innovation extrêmement impressionnante, donc, qui fait évidemment l’objet d’un dépôt de brevet par Raytheon.

 

degrad3

Des chercheurs chinois de l’université de technologie de Guangzhou viennent de développer un « bouclier » transparent en matériau composite, capable de bloquer les radiations UV, permettant ainsi de résoudre partiellement l’un des problèmes responsables de la dégradation de l’électronique à bord des satellites ou engins spatiaux.

7020155-earth-view-space

En effet, au sol, nous recevons du soleil un rayonnement composé de 5% d’UV, 39% de rayonnement visible et 56% d’infrarouge, le rayonnement ultraviolet étant bloqué en grande partie par l’atmosphère et en particulier par la couche d’ozone. Mais ce rayonnement UV (B) augmente de 10% tous les 700 mètres. À 1500 m d’altitude, le rayonnement est déjà 20% plus intense qu’au niveau de la mer. Dans l’espace, il n’est pas arrêté. Or le rayonnement UV (comme toutes les radiations cosmiques) cause des dommages importants à l’électronique des engins spatiaux allant de la génération d’anomalies de fonctionnement jusqu’à la dégradation physique des composants.

Les scientifiques chinois ont annoncé avoir créé un nouveau matériau transparent, un verre à base de CeO2 (oxyde de Cerium) possédant trois propriétés remarquables : son absorption des rayonnements UV, sa transparence, et sa capacité à ralentir la dégradation des matériaux exposés au rayonnement (en fait, sa capacité à supprimer la réaction de séparation électrons/trous pour les électrons photogénérés). Oui je sais, ça pique un peu comme phrase…En gros, on supprime une activité de photocatalyse très nuisible aux matériaux exposés.

degrad2

C’est la fabrication de ce nouveau composite qui a donné le plus de fil à retordre aux chercheurs, car il s’agit en particulier de pouvoir maîtriser une technique de nanocristallisation. Pour les irréductibles de la physique des matériaux, voir l’article complet ici (et bon courage).

degrad1

L’intérêt en l’occurrence est de pouvoir appliquer cette protection sous forme de film, sur des surfaces devant rester transparentes : panneaux solaires, optiques et capteurs, … prolongeant ainsi la durée de vie des composants spatiaux, notamment des satellites militaires. On peut également imaginer l’utiliser pour des visières de nouvelle génération, car le matériau créé a montré sa capacité à protéger des cellules vivantes contre ces mêmes radiations.

Il reste néanmoins à trouver des moyens de se protéger contre les autres types de radiations ionisantes présentes dans l’espace, le milieu le plus hostile que l’on puisse trouver.

para4

Le largage de précision a pour objectif de livrer par parachute de l’équipement, des colis, des munitions, à une hauteur variant entre 125m (400 pieds) et 7600m (25 000 pieds environ) d’altitude, en fonction de la méthode choisie : utilisation de la gravité, ou éjection de la charge dans le second cas. Il a pour objectif de renforcer la logistique de théâtre, de ravitailler des garnisons ou des unités isolées en environnement hostile.

Mais au-delà de l’éjection, un second problème consiste à atterrir avec précision à l’emplacement visé (en particulier lorsque l’aérolargage est effectué au profit des Forces Spéciales). En ce cas, des parachutes guidés de type « aile » (parafoils) peuvent être utilisés, et pour permettre un guidage optimal, des solutions de « parachute intelligent » ont été développées.

para1

Le plus connu est le système américain JPADS, pour « joint precision airdrop system », en service depuis 2006 en Afghanistan. Il s’agit d’une famille comprenant principalement 4 systèmes autonomes, guidés grâce à un GPS couplé à des servomoteurs directement reliés aux suspentes, et largués à des altitudes allant jusqu’à 25 000 pieds. Ils permettent de guider une charge au sol, avec une précision de l’ordre de 50 mètres. D’autres solutions du même type existent comme le Paralander développé par Cassidian, le DragonFly, l’Onyx ou des solutions de type parafoils motorisés.

Mais le GPS est susceptible d’être brouillé ou perturbé soit par des systèmes de guerre électronique, soit même par des solutions bon marché et compactes, accessibles au grand public. Pour contrer cette menace, les développeurs du JPADS l’ont doté d’un nouveau système de guidage qui utilise la vision artificielle.

L’idée est ainsi de munir le système de guidage d’un boitier AGU (aerial guidance unit) muni d’une caméra qui regarde le sol, et compare l’image optique avec une imagerie satellitaire entrée en préparation de mission dans la base de données de l’AGU. En lieu et place du GPS, le système utilise des indices visuels pour réaligner le guidage en fonction des données optiques recueillies.

para2

Evidemment, en cas de largage nocturne, ou de couche nuageuse importante, la solution se révèle limitée. L’US Army (Army’s Natick Soldier Research, Development and Engineering Center ou NSRDEC) travaille donc aujourd’hui avec la société Draper, conceptrice du JPADS, pour surmonter ces difficultés, en utilisant des capteurs infrarouges, ou en utilisant une combinaison de systèmes de guidage visuels/GPS.

para3

Les premiers tests réalisés (photos ci-dessus) ont néanmoins permis de confirmer l’intérêt de l’approche, avec une précision satisfaisante de largage, alors qu’aucune donnée GPS (et en particulier pas de données sur la position initiale de l’avion) n’a été utilisée. La même approche, si elle se révèle suffisamment robuste, pourrait être à terme utilisée pour le guidage de drones, ou le largage HALO (haute altitude, basse ouverture) de chuteurs opérationnels.

sw2

Il ne s’agit pas de systèmes d’armes létaux autonomes, car sont supposés être contrôlés en permanence par un humain, mais quand même… Le programme Lethal Miniature Aerial Munition System ou LMAMS vise à développer des munitions intelligentes – un nom sibyllin pour désigner des drones armés portables.

La société américaine Aerovironment a ainsi développé et déployé le Switchblade, un mini-drone portable armé. Transportable dans un sac à dos car il ne pèse que 2,5 kg, le drone est tiré à partir d’un tube. Une fois éjecté, ses ailes se déploient, et il commence un vol qui peut durer jusqu’à 10 minutes, dans un rayon de 10km. Capable d’envoyer des images dans les spectres visible et infrarouge à l’opérateur qui le contrôle, il est aussi capable de fondre à 150 km/h sur sa proie… en activant une tête militaire capable de neutraliser un camion. Un drone kamikaze, en quelque sorte… Il peut également être programmé pour percuter une cible prédéfinie.

sw1

Cela est peu connu, mais 4000 de ces drones ont déjà été déployés en Afghanistan par la 3e division d’infanterie américaine. Et les fantassins sont plutôt conquis par le concept. Vous pouvez le voir en action sur ce film.

Evidemment, des questions se posent par exemple sur la vulnérabilité au piratage ou au brouillage de ces drones (la société Aerovironment ne souhaite pas communiquer à ce sujet). Et il vaut mieux ne pas imaginer de tels systèmes entre de mauvaises mains. D’autant que le Switchblade n’est pas le seul engin de ce type. Ainsi, la société Textron, avec le Battlehawk (ci-dessous), la société Israélienne uVIsion avec le Hero30 ou encore Lockheed Martin, avec le Terminator ( !) sont également en lice pour le programme LMAMS.

sw6

Pour ce dernier, les spécifications sont exigeantes : le système doit être piloté à partir d’une station opérable de jour comme de nuit, fournir de la vidéo et des moyens de contrôle en temps réel. L’opérateur doit pouvoir sélectionner les cibles visuellement, par géolocalisation, pouvoir armer ou désarmer le système. Ce dernier doit être capable d’interrompre sa mission et de revenir seul à son point de lancement. Le système doit pouvoir opérer de manière semi-autonome, manuelle, ou… autonome (un mot dangereux car extrêmement vague, dès lors que l’on parle de systèmes d’armes létaux : en l’occurrence, il est bien précisé que c’est l’opérateur qui commande la détonation de la charge militaire).

Ce sont donc tous des drones professionnels haut de gamme. Mais dans ce blog, je parlais récemment du drone DISCO de Parrot qui pourrait être équipé de capacités analogues (si l’on élimine le besoin d’une optronique performante). Et donc représenter une menace en cas de détournement… D’ailleurs, la photo suivante montre un drone Skywalker X9 civil, militarisé par Daech, et transformé en IED (heureusement abattu par les forces kurdes).

sw4

Une nouvelle menace à prendre en compte dans cette course à la technologie aujourd’hui ouverte à tous les participants.


kn3

Depuis longtemps, les Nord-Coréens nous ont habitué à des annonces retentissantes, supposées renforcer (généralement, et c’est encore le cas ici) la puissance du leader suprême (sic) à quelques jours de son anniversaire. C’est dire la méfiance que suscite l’annonce du succès d’un test supposé de bombe H nord-coréenne, il y a quelques jours. Alors : effet d’annonce, ou réel succès pour le régime ? La technologie est aujourd’hui en mesure de rechercher la vérité.

En premier lieu, la détonation a généré des ondes sonores  (infrasons inférieurs à 17 Hz) et des ondes sismiques, et en particulier des ondes de compression (ondes P) – en l’occurrence, équivalentes à un séisme de magnitude 5.1. Ces ondes sont capturées par un réseau de 80 stations munies de capteurs, réparties dans le monde entier. Et le signal, une fois capté, doit être reconstruit et débruité, puisque les caractéristiques du milieu de propagation (granit, roches plus poreuses…) dégradent le signal. En l’occurrence, des ondes P ont bien été détectées, mais cela signifie simplement qu’une explosion a eu lieu.

kn4

Pour savoir si celle-ci est d’origine nucléaire, et qu’il s’agit en particulier d’une bombe à hydrogène, il est nécessaire d’analyser les radioéléments relâchés lors de l’explosion. La présence de résidus d’uranium ou de plutonium est caractéristique d’une bombe A, alors qu’une bombe H thermonucléaire, mettant en œuvre un processus de fusion et non de fission, relâche beaucoup moins de tels résidus, et une combinatoire caractéristique (et d’ailleurs secrète) de différents isotopes. Pourquoi secrète ? Parce qu’en l’analysant, on apprend beaucoup de la fabrication d’une bombe à hydrogène. Les signatures caractéristiques ne sont donc pas publiques. Au-delà des isotopes et résidus, les gaz émis comme le xénon sont également des signatures de la composition de la bombe. Mais l’explosion a eu lieu en souterrain : cela complique donc l’analyse.

Pour tenter néanmoins de détecter ces éléments, les Etats-Unis ont envoyé des avions « renifleurs » (sic). En l’espèce, un avion WC-135 Constant Phoenix, un quadriréacteur dérivé d’un C135, équipé de capteurs d’air embarqués capable de recueillir, d’analyser  et de conserver les particules radioactives éventuellement émises. L’US Air Force dispose de deux avions de ce type, qui sont intervenus à Tchernobyl, lors de l’accident de Fukushima, et lors des trois derniers essais supposés de la bombe Nord-Coréenne (en 2006, 2009 et 2013). L’avion a été envoyé le mercredi 6 janvier à proximité de la zone.

KN2

D’autres systèmes de détection existent, comme par exemple l’utilisation du réseau GPS, celui des satellites permettant le positionnement et la navigation. Car une explosion, même souterraine, génère une onde de choc jusqu’à l’atmosphère. Celle ci affecte la densité des électrons en générant un pic de densité, qui modifie la vitesse de propagation du signal GPS. Comme les stations de réception GPS sont distribuées dans le monde, il est possible, par triangulation et suivi de l’onde de propagation, de tracer l’explosion et d’en déduire quelques caractéristiques. Ainsi, lors de l’explosion nord-coréenne de 2009, 11 stations de réception dans la région ont détecté une onde de choc voyageant à 870 km/h, et provenant du site de P’unggye en Corée du Nord (ci-dessous).

KN1

Mais la signature sismique à elle seule tend à montrer qu’il ne s’agissait sans doute pas d’une bombe à hydrogène. Car l’onde de choc générée n’est pas caractéristique d’une explosion thermonucléaire (de l’ordre de l’équivalent d’une dizaine de mégatonnes de TNT), mais proche de la magnitude observée lors des derniers essais nord-coréens (magnitude 4.5, avec une charge explosive de l’ordre de la dizaine ou de la centaine de kilotonnes de TNT). L’envoi du WC-135 devrait permettre de confirmer cette hypothèse.

En l’espèce, il ne s’agirait pas d’une bombe H, mais d’une bombe A « dopée » au deutérium et au tritium (permettant d’augmenter la température au sein de l’engin, et donc de générer plus d’énergie lors de l’explosion). C’est en tout cas aujourd’hui la thèse privilégiée, même si le simple fait d’annoncer la miniaturisation de l’arme, et sa capacité à être embarquée sur un missile KN08, est en soi un sujet d’inquiétude. Mais cela est, pour le coup, difficilement vérifiable.

falcon1

La problématique de la détection et de la neutralisation de drones aériens volant dans des zones interdites est plus que jamais prégnante, notamment en raison de l’accroissement des menaces terroristes, et de la démocratisation de drones hautes performances accessibles à chacun – à ce sujet, je vous conseille de regarder Disco, la nouvelle aile volante développée et commercialisée par le fabricant français Parrot. Avec une autonomie de 45 min et une vitesse de pointe de 80 km/h, mieux vaut ne pas imaginer son détournement à des fins hostiles…

falcon3

Plusieurs solutions pour détecter et surtout neutraliser les drones existent et sont en cours de déploiement : elles vont de l’utilisation de carabines 22 long rifle (si, si) à l’emploi de lasers en passant par le piratage de la liaison entre le drone et sa station de contrôle. A titre d’exemple, on peut citer le Drone Defender développé par la société Batelle, un « fusil » permettant de diriger des ondes radio pour brouiller un drone d’observation et provoquer sa chute (photo ci-dessous).

falcon2

Mais l’approche développée par l’université de technologie du Michigan est pour le moins originale.

Les concepteurs l’ont appelé « Robotic Falcon », et c’est le premier drone prédateur de drones. L’idée consiste en effet à envoyer un drone muni d’un filet de capture, afin d’intercepter tout engin menaçant. L’approche, originale, voit les choses en grand puisqu’un immense filet est attaché à un drone intercepteur. Lorsqu’un intrus est détecté, l’intercepteur s’approche, et envoie son filet (qui reste relié au drone) à une distance de 12m de l’objectif – ce dernier est alors capturé, et ramené au sol.

La manœuvre est visible sur cette vidéo :

Cette approche, bien que rustique, est assez efficace, puisqu’elle permet en premier lieu de ramener le drone à des fins d’examen. Elle a également l’avantage de ne pas le faire chuter au-dessus de la zone sensible, ce qui pourrait s’avérer dramatique dans le cas où le drone suspect s’avère porter des explosifs. Enfin, cette approche simple semble également peu coûteuse – les concepteurs (dont le Pr Mo Rastgaar, à l’origine un spécialiste de la robotisation de prothèses de hanche) ont donc effectué un dépôt de brevet. Reste ensuite à voir les limites du procédé, en particulier dans le domaine de l’interception de drones rapides. A quand une aile volante pour capturer les ailes volantes?

deep0

L’essor de l’internet des objets a parfois des conséquences inattendues – surtout lorsqu’il s’accompagne du développement de l’intelligence artificielle. Aujourd’hui, les objets connectés comme les smartwatch, ou les bracelets connectés (fitbit et autres) pénètrent dans les foyers et accompagnent l’utilisateur au quotidien. Une manne pour les espions 3.0.

Des chercheurs de l’université de Copenhague viennent d’en faire la preuve. Car aujourd’hui, tout le monde ou presque continue à utiliser un clavier pour rédiger ses documents, taper des recherches, entrer des mots de passe ou des coordonnées bancaires.

Mais lorsque l’utilisateur porte un WAD (Wearable Wristband and Armband Device : acronyme rassemblant les montres et bracelets connectés), il porte en réalité un dispositif bardé de capteurs de mouvement (accéléromètre, gyroscopes, …). L’exploitation de ces capteurs pourrait donc permettre de reconstituer la totalité des informations tapées par l’utilisateur : mots de passe mais aussi codes d’accès à des bâtiments ou pour des distributeurs de billets, « knock codes » sur smartphone, etc.

deep3

La reconstitution de l’information n’est pas triviale, puisque les mouvements sont individuellement variables et bruités : il est donc très difficile d’en reconstituer les aspects exploitables… sauf lorsque l’intelligence artificielle s’en mêle.

C’est ce que l’on appelle le Deep Spying : l’espionnage faisant appel à des techniques de « Deep Learning » (apprentissage machine fondé sur l’analyse de modèles de données). Dans le cas présent, l’approche utilisée repose sur l’utilisation de réseaux de neurones multicouches afin d’extraire et d’apprendre des caractéristiques propres à la frappe de l’utilisateur. Car depuis longtemps, on songe à utiliser le mouvement caractéristique d’un utilisateur pour l’identifier. Ici, cette approche est détournée pour apprendre de l’utilisateur ses caractéristiques, afin de pouvoir capturer les informations qu’il divulgue involontairement par ses mouvements.

Les résultats sont plutôt bons : la prédiction correcte est de 59% pour les claviers, et monte à 79% pour le « touchlogging » : l’utilisation d’un clavier virtuel tactile.

Mais cette approche possède encore – et heureusement – des limites. En l’occurrence, la montre connectée utilisée était en libre accès, ce qui a permis aux chercheurs de Copenhague de constituer les bases de données nécessaires à l’apprentissage. Car il faut aujourd’hui pouvoir suivre l’utilisateur pendant un certain temps, et entraîner le système de manière supervisée. Demain, on peut néanmoins imaginer que des bases de données génériques peuvent être mises en place, et servir de « graines » pour un apprentissage plus rapide, d’un utilisateur inconnu.

deep2

Ce développement fait suite à une première application, qui avait été conçue par des étudiants de l’université ECE Illinois (Electrical & Computer Engineering), dans le cadre du projet MoLe (pour Motion Leaks). Ces étudiants avaient également imaginé une parade : que les concepteurs des objets connectés diminuent la fréquence d’échantillonnage des capteurs (aujourd’hui environ 200 Hz) à 15 Hz, ce qui rendrait les mouvements très difficiles à analyser.

Une autre parade ? Simplement mettre la montre à l’autre poignet…

La thèse est téléchargeable ici.

alpha3

Nous avons déjà abondamment parlé dans ce blog des questions liées au développement de la robotique militaire et en particulier de la robotique de théâtre. Aux aspects éthiques et à la doctrine d’emploi s’ajoute aujourd’hui un nouveau défi : se débarrasser du bruit infernal de ces nouvelles machines.

Vous avez en effet sans doute déjà aperçu la machine développée par Boston Dynamics, société rachetée en 2013 par Google (aujourd’hui Alphabet), et destinée à alléger le combattant, en assurant le transport du matériel lourd, des équipements de communication, de la nourriture et de l’eau. Baptisée AlphaDog mais répondant au nom officiel de LS3 pour Legged Squad Support System, la bestiole a été successivement connue sous le nom de Mule et de Big Dog.

alpha1

Après un programme de 32 millions de $ (si, si), une expérimentation grandeur nature dans le cadre des exercices Pacific Rim, les US Marines viennent d’annoncer leur décision de ne pas mettre AlphaDog en service. La raison : le bruit !

Car le robot est motorisé par un moteur à deux temps à un cylindre, d’une puissance de 15 ch et tournant à 9 000 tours par minute. Et il fait le bruit d’une tondeuse à gazon : un sérieux souci dans un contexte opérationnel réel, comme celui d’une patrouille, ou d’une reconnaissance avancée. En gros, l’ennemi n’a plus besoin de positionner des sentinelles : il entend la patrouille arriver à 1km. Pas vraiment discret…

Alphabet a essayé de résoudre le problème en réalisant une nouvelle version du robot, baptisée SPOT, et dotée d’un moteur électrique. Si ce dernier a effectivement permis de réduire le niveau de bruit, il a divisé la capacité d’emport par 10, et a généré des problèmes insolubles d’autonomie, et de pilotage (une négation en soi du concept de robot autonome).

alpha2

Le fondateur de Boston Dynamics, Marc Raibert, a vertement répliqué en affirmant que le projet LS3 était avant tout un projet de recherche, et qu’il avait permis de lever un certain nombre de risques technologiques, liés à l’emploi d’un robot autonome quadrupède en environnement réel. En ce sens, il a raison : les prochaines générations pourront effectivement se reposer sur les résultats de ce programme. D’ailleurs, Alpha Dog est bien plus silencieux que ses prédécesseurs.

Il reste néanmoins vrai que le silence devra, en plus de l’autonomie et des capacités, être mis au premier plan des critères opérationnels pertinents pour le développement d’une réelle robotique de théâtre. Sans doute ce critère inspirera-t’il les concepteurs des défis du prochain DARPA Robotics Challenge…