Articles Tagués ‘quantique’

rachine1

Il y a quelques temps j’avais parlé dans ce blog du premier satellite utilisant le principe d’intrication quantique des photons pour réaliser une transmission cryptée (voir cet article). Cette fois-ci, il ne s’agit plus de cryptographie, mais d’une technologie plus directement opérationnelle : un radar tueur de furtivité.

Bon, je préviens tout de suite, nous sommes encore une fois dans le domaine quantique, donc dans un domaine parfaitement contre-intuitif, et mon effort de vulgarisation (surtout si l’on considère que je ne suis pas physicien) risque de m’attirer les foudres des experts. Désolé donc.

Le principe du radar quantique repose lui aussi sur le principe de l’intrication des photons, une propriété surprenante à l’échelle quantique. Pour faire simple, en physique quantique, l’état d’une particule est décrit par une « fonction d’onde ». Celle-ci correspond au spin de la particule (son moment cinétique, classiquement représenté par une flèche vers le haut ou le bas) et qui lui-même correspond à une superposition d’états. A l’échelle quantique, le spin est en effet une somme des états « vers le haut » et « vers le bas ».

Mais lorsqu’on mesure l’orientation du spin, la fonction d’onde est modifiée (« réduite ») de telle sorte que la superposition d’états disparaît et le spin observé prend, de façon aléatoire, la valeur « haut » ou la valeur « bas ». Pour l’instant, c’est encore compréhensible. Ça devient plus complexe lorsque l’on considère qu’en physique quantique, on peut avoir une généralisation de la superposition d’états à plusieurs particules. En l’occurrence, considérons 2 photons dits « intriqués » : ce sont deux particules dont les spins sont opposés. Même si ces particules sont spatialement éloignées, si l’on mesure le spin de la première, la seconde prend instantanément une valeur de spin opposée. Oui je sais, c’est bizarre. Mais c’est comme ça.

rachine3

Le radar chinois repose sur ce principe. L’astuce est d’utiliser la polarisation du signal radar comme une signature quantique. Un photon est séparé, via un dispositif optique, en un couple de photons intriqués. Le radar va ainsi générer un faisceau de photons A, et un faisceau de photons B, intriqués. Les photons B sont surveillés constamment (là encore, vous comprenez que je simplifie), alors que le faisceau A est envoyé en direction de la cible. Si la fonction d’onde du faisceau B se modifie, cela signifie que le faisceau de photons A a atteint une cible, ce qui a provoqué une modification de son spin, et ainsi modifié instantanément celui du faisceau B intriqué.

rachine4

L’intérêt, c’est que cette modification est indépendante de la forme de la surface heurtée. La furtivité classique consiste à minimiser la surface équivalente radar en supprimant autant que possible la réflexion des ondes en direction du radar. Mais dans le cas d’un radar quantique, il ne s’agit pas de détecter une onde réfléchie, mais de détecter une modification de l’état d’un faisceau de photons. Les stratégies classiques de furtivité sont donc inefficaces, comme le sont les contre-mesures de brouillage : le radar quantique n’utilise pas d’ondes ! De plus, l’interaction du faisceau de photons avec la cible est caractéristique de la nature de la cible elle-même : en observant les modifications du faisceau B, on arrive à caractériser la cible, sa position, sa vitesse et ses propriétés physiques.

rachine2

Ce radar a été développé par le Intelligent Perception Technology Laboratory du CETC (China Electronics Technology Corporation). Selon l’agence de presse chinoise, le système aurait réussi à détecter une cible à une distance de 100km. Ce n’est effectivement qu’une preuve de concept, et l’utilisation militaire d’une telle technologie nécessite évidemment des portées bien plus importantes. Il y a d’ailleurs là une difficulté : ce que l’on appelle la décohérence. Car plus les particules intriquées passent de temps dans le monde réel, plus elles ont tendance à perdre leurs propriétés quantiques. Lockheed Martin avait d’ailleurs tenté à plusieurs reprises de réaliser un tel radar, avant de se heurter au principe de décohérence.

Les allégations chinoises sont difficilement vérifiables, mais il est néanmoins vrai que la maîtrise d’une telle technologie constituerait une rupture capacitaire et stratégique. Une véritable réflexion sur l’impact de telles innovations (informatique et technologies quantiques, convergence NBIC, …) et sur leur financement, pour éviter à notre pays et à notre continent toute surprise stratégique majeure me semble aujourd’hui indispensable. Mais ce n’est que mon avis.

quess1

Décidément, la Chine accélère son développement technologique à tel point que l’on n’est plus dans une logique de rattrapage mais bien dans une logique de dépassement, comme le rappelait l’excellent David Menga lors de la conférence annuelle « Mission CES » au MEDEF (voir sur Twitter #whatsnext) organisée avec Xavier Dalloz.

Tout le monde a entendu parler des récents progrès de la Chine, notamment dans le domaine du calcul (les 2 plus puissants superordinateurs au monde sont aujourd’hui chinois, le premier ayant une puissance de plus de 90 petaflops, soit 90 millions de milliards d’opérations en virgule flottante par seconde). Mais de nouvelles et impressionnantes réalisations avec des implications concrètes dans la défense viennent d’être dévoilées. Au premier rang d’entre elles, le déploiement de ce qui apparait comme le premier satellite de cryptographie quantique au monde.

quess6

Baptisé (suivant les traducteurs) Micius ou Mozi (un philosophe et scientifique chinois du Ve siècle avant JC), il s’agirait du premier « satellite QUESS » (Quantum Experiments at Space Scale). Traduction : c’est un satellite capable d’utiliser depuis l’espace un protocole de cryptographie quantique.

En soi, la technologie n’est pas nouvelle puisque son principe date des années 1960 La cryptographie quantique consiste en effet à utiliser les propriétés des photons à l’échelle quantique (intrication, superposition…) pour permettre un échange de clés de chiffrement de manière sécurisée. Pour ce faire, on utilise le principe de polarisation des photons. Cela consiste à être capable d’émettre une suite de photons (un par un, c’est pour cela que l’on parle de source de photons uniques) tous polarisés (donc oscillant dans une direction) de la même manière. Un modulateur électro-optique permet ensuite par l’application d’une tension choisie par l’émetteur de polariser le photon dans l’un des 4 états possibles. Je ne rentre pas ici dans le détail (on appelle cela le protocole BB84 pour Bennett & Brassard, 1984).

En gros, si le photon est polarisé parallèlement à l’angle d’orientation du filtre, le photon sera transmis sans changement (1), s’il est perpendiculaire, il sera absorbé et ne passera pas (0), et si la direction est intermédiaire, il passe ou non selon une probabilité liée au carré du cosinus de l’angle de polarisation du photon par rapport à celui du filtre (vous êtes toujours là ???). Et s’il est transmis, alors sa nouvelle polarisation correspondra à l’angle d’orientation du filtre.

quess2

Encore une fois, je simplifie, mais cela permet (1) de générer des clés véritablement aléatoires et (2) d’être certain que si l’on intercepte le photon pour mesurer sa polarisation, on la change obligatoirement. Donc il est impossible d’intercepter le message sans le modifier (auquel cas, la tentative d’interception sera connue par le principe d’intrication quantique : deux photons peuvent être liés, si l’un est modifié, l’autre le sera également – et si ce dernier est conservé dans une « clé privée », cela permettra à coup sûr de détecter la tentative de piratage). Vous trouverez sur Internet beaucoup de sites expliquant ce principe – j’arrête là pour ne pas perdre davantage de lecteurs. Et la société (disparue aujourd’hui) SmartQuantum avait, il y a quelques années, développé de tels boîtiers de cryptage quantique en France.

Mais ici, le défi est plus complexe car ces photons doivent être émis sur de grandes distances. Plusieurs expériences ont été réalisées tant par des équipes chinoises qu’Européennes ou américaines. Ainsi en mai 2012 une expérimentation de téléportation quantique a été réalisée avec succès sur une distance de 143 km dans les îles Canaries.

quess4

Le principe de Mozi est de tester ce procédé depuis l’espace. Ainsi, un signal Laser (source de photons) constituant une clé de cryptage quantique sera émis depuis le sol (station à Pékin), reçu et déchiffré par le satellite placé en orbite basse (500km), puis réémis vers un second site au sol distant du premier de plus de 2500km (Urumqi). Evidemment, cela nécessitera une précision redoutable afin de pouvoir réellement recevoir et déchiffrer le signal). Le satellite lui-même comporte tous les équipements nécessaires au codage, décodage, réception et émission du signal.

quess5

Le but est de valider que cette technologie peut être utilisée de manière opérationnelle pour transmettre des messages inviolables sur une grande distance. Ce n’est pas demain qu’une telle technologie sera déployée sous forme d’un réseau (on pense que cela sera possible d’ici une quinzaine d’année).

Toutefois, cette capacité constitue une véritable rupture stratégique, rendue possible par un financement colossal dans le cadre du nouveau plan quinquennal de recherche de la Chine. La France et l’Europe ne disposent pas de telles ressources, malgré une expertise reconnue dans les mathématiques, la physique et le spatial. Alors comment anticiper et répondre à de telles ruptures capacitaires ? La question est posée et elle est sérieuse.

 

dw4

Nous avons déjà parlé à plusieurs reprises dans ce blog de l’ordinateur quantique : je vous renvoie par exemple à cet article.

Pour mémoire, on rappelle qu’un tel superordinateur, imaginé par le physicien et Nobel Richard Feynman, repose sur le principe de l’utilisation des propriétés quantiques de la matière. Un ordinateur quantique manipule des qbits (ou qubits ou quantum bits) – voir l’article évoqué ci-dessus – et sa puissance est une fonction exponentielle du nombre de qbits manipulés. En traduction : plus un processeur quantique peut manipuler de qbits, plus il se rapproche du superordinateur rêvé par tous les informaticiens et capable de résoudre des problèmes jusque-là inattaquables.

dw1

Un calcul d’optimisation qui prendrait l’équivalent de l’âge de l’univers par un ordinateur classique serait résolu en moins de 10 minutes par un ordinateur quantique à 3000qbits. Inutile de souligner à nouveau la rupture stratégique et de souveraineté qu’amènerait un tel outil à la nation qui le posséderait.

qc3

Il y a quelques temps, la société canadienne D-Wave Systems, située à Burnaby, près de Vancouver, a annoncé avoir développé un ordinateur quantique (à 15 millions de dollars tout de même), acheté par Google ou la NSA entre autres (bien entendu je ne fais aucun rapprochement…), et capable de manipuler 512 qbits. Google a ainsi annoncé avoir constaté qu’un algorithme d’optimisation (dit « de recuit simulé ») était plus de 100 millions de fois plus rapide sur la machine de D-Wave que sur un ordinateur classique. Un exploit toutefois considéré avec méfiance par de nombreux spécialistes, dans la mesure où D-Wave a toujours refusé de divulguer les détails de ses tests, ni de procéder à des tests indépendants.

La société revient aujourd’hui sur le devant de la scène, avec un nouveau processeur quantique capable de manipuler 2000 qbits, et 1000 fois plus puissant que son prédécesseur, le D-Wave 2X.

dw2

Ce processeur utilise des micro-composants de niobium refroidis à l’helium liquide à une température proche du zéro absolu (en l’occurrence -273°C). Avec une telle machine, D-Wave annonce vouloir révolutionner la recherche opérationnelle et – c’est à la mode – l’apprentissage machine et l’intelligence artificielle.

Une telle machine, toutefois, ne pourra résoudre que les problèmes pour lesquels elle est optimisée ; les experts n’envisagent en effet le développement d’un véritable supercalculateur quantique qu’à partir de 2030. En l’occurrence, le nouveau processeur de D-Wave ne sait résoudre que des problèmes d’optimisation dits QUBO (Quadratic unconstrained binary optimization) – parmi lesquels, il est vrai, on trouve des problèmes de « pattern matching », d’optimisation ou certains algorithmes d’apprentissage.

Et c’est là que cela devient intéressant, car le développement de processeurs spécifiquement optimisés pour l’intelligence artificielle et en particulier le « deep learning » (le renouveau des réseaux de neurones) figure sur la feuille de route de nombre de fabricants de processeurs. Ainsi, NVIDIA a développé la carte DGX1, dédiée à l’apprentissage machine (et ne coûtant qu’environ 100k€).

dw3

Avec le développement du nouveau processeur de D-Wave, on commence à entrevoir une génération de machines quantiques spécifiquement optimisées, et qui permettraient de doper considérablement l’apprentissage non supervisé. Je ne rentre pas dans les détails, mais les grands défis de l’intelligence artificielle sont de ce type : détection d’anomalies dans des réseaux, identification de « patterns » dans les profils et comportements pour la lutte anti-terroriste, analyse automatique d’images complexes, etc…

dw5

Cela explique sans doute pourquoi D-Wave a été financée par plusieurs sociétés, dont Bezos Investment (fondée par la société du créateur d’Amazon, Jeff Bezos) et surtout, In-Q-Tel, la société d’investissement…de la CIA.