Articles Tagués ‘fabrication additive’

moab7

Vous vous souvenez sans doute, il y a quelques semaines, du largage en Afghanistan par l’US Air Force de la bombe GBU-43/B Massive Ordnance Air Blast – ou MOAB (aussitôt surnommée Mother Of All Bombs et même « Frankenbomb »). Il s’agit de la plus puissante bombe non nucléaire disponible dans l’arsenal américain : une bombe de 9800 kg, contenant plus de 8400 kg d’explosifs H6, soit un équivalent de 11 tonnes de TNT, pour un prix modique de 16 millions de dollars par unité.

moab5

La vidéo ci-dessous montre le largage du monstre, effectué le 12 avril dernier, contre un complexe de l’état islamique en Afghanistan.

L’US Air Force a récemment annoncé travailler sur une « mini-MOAB », avec la volonté de développer une bombe plus petite, et avec effet de souffle sélectif. Explications.

L’idée est en fait d’avoir, avec une même bombe, la possibilité d’avoir un effet de souffle restreint ou plus large. On rappelle qu’une bombe de type « airburst » est conçue pour exploser à quelques mètres du sol et non à l’impact. Guidée par GPS, sa trajectoire de chute est contrôlée par une centrale inertielle avec une précision à l’impact de 8m. Pas très discriminant, mais comme le disait l’autre « elle détruit tout, y compris ce qui est visé » ( !).

moab6

La hauteur de l’effet de souffle peut être contrôlée ; l’avantage est que cette hauteur est directement liée à la puissance destructrice de la bombe, notamment car l’onde de choc est réfléchie par la surface. L’image ci-dessous illustre le concept.

moab2

Si l’on désolidarise le détonateur de l’enveloppe de la bombe elle-même, on peut distribuer différents détonateurs sur la bombe, afin de pouvoir contrôler les modalités de la mise à feu lorsque cette dernière approche sa cible. Ce faisant, l’onde de choc est contrôlée et modulée en fonction de ce qui est souhaité. Cela permet également d’améliorer la résilience de l’arme, en disposant de plusieurs détonateurs redondants.

Mais distribuer de tels détonateurs n’est pas évident en utilisant des techniques conventionnelles de fabrication. C’est notamment pour cette raison que les ingénieurs de l’Air Force Research Lab ont imaginé pouvoir utiliser des techniques de fabrication additive (impression 3D) pour concevoir cette bombe. Ils viennent de dévoiler un prototype à l’échelle 1 :7 lors de la journée « Department of Defence Lab Day » organisée au Pentagone.

L’impression 3D permet de concevoir des prototypes de détonateurs externes modulaires, qui sont intégrés au sein de la bombe – c’est l’image ci-dessous. C’est donc l’illustration du concept de bombe à effet de souffle sélectif.

moab3

On pourrait dire que ce prototypage peut être réalisé sans utiliser de techniques de fabrication additive. C’est exact, mais la réflexion de l’US AFRL va plus loin, et cette fois-ci, l’impression 3D se révèle indispensable. C’est une question de poids et d’efficacité.

L’enveloppe externe en aluminium d’une bombe airburst classique comme la MOAB, bien que fine, a une épaisseur d’environ 5 cm. Cela a pour effet de générer de très nombreux débris, mais également de limiter la taille de l’explosion. Pour diminuer cette enveloppe, l’idée est de conserver une intégrité structurelle en répartissant le poids de l’enveloppe jusqu’à l’intérieur de la bombe elle-même. Pour ce faire, des pièces spécifiques en acier sont conçues via impression 3D. Ressemblant aux traverses de la tour Eiffel, l’idée est d’alléger au maximum la structure en intégrant des renforts jusqu’au cœur de la bombe (image ci-dessous).

moab4

L’idée est également de rendre la bombe plus compacte, et plus adaptée aux systèmes d’emport des avions modernes, avec souvent l’existence d’une trappe à munitions.

On voit ainsi la généralisation des techniques de fabrication additive, avec des technologies qui permettent aujourd’hui (même si dans le cas présenté il s’agit essentiellement d’un prototype) des gains en termes de poids, l’optimisation de structures, la conception d’équipements plus compacts, et surtout l’émergence de nouveaux concepts (comme ici la modulation de l’effet de souffle).

 

rambo7

Bon, pour une fois, je me suis fait coiffer sur le poteau par l’excellent blog OPEX360 qui a publié un article sur le même sujet. Du coup, je me permets quand même de publier celui-ci, qui complète l’analyse d’OPEX360 – mais voici également un lien vers leur article. Il faut être beau joueur.

Nous avons déjà parlé à maintes reprises de la fabrication additive (nom compliqué pour l’impression 3D), en rappelant qu’elle permettait aujourd’hui de réaliser des objets complexes, notamment des armes. D’un côté (le bon) cela permet d’envisager des unités de logistique avancées sur le théâtre d’opérations, capables de réparer, modifier, ajuster des composants ou pièces détachées. D’un autre (le mauvais), cela donne la capacité à ceux « d’en face » de disposer de moyens de réaliser des armes efficaces et intraçables. Rappelons qu’aujourd’hui, on n’imprime pas que du plastique, mais également du métal (titane, aluminium…) et même bientôt des organes…

L’US Army vient encore une fois d’enfoncer le clou (avec un très gros marteau), en annonçant le test réussi du RAMBO (on ne peut pas dire qu’ils n’ont pas d’humour) pour Rapid Additively Manufactured Ballistics Ordnance (!) soit arme balistique rapidement fabriquée par impression 3D. Oui, il fallait trouver l’acronyme…

rambo1

Il s’agit du résultat d’un projet de recherche collaboratif de 6 mois qui associait le RDECOM (Army Research, Development, and Engineering Command) le U.S. Army Manufacturing Technology (ManTech) Program et AmericaMakes, une entité visant à accélérer le développement des technologies de fabrication additive. Le défi était réel : le RAMBO est un fusil lance-grenades de 40mm fondé sur le modèle du M203A1, et composé de 50 pièces, qui ont toutes été fabriquées en utilisant l’impression 3D (à l’exception des ressorts). Et le but du programme n’était pas simplement de montrer que c’était possible, mais essentiellement de prouver la faisabilité d’accélérer considérablement le processus de transition entre le prototype de laboratoire et le produit utilisable sur le terrain.

rambo2

Pour le réaliser, différentes technologies d’impression 3D ont été utilisées. Ainsi, le canon de l’arme a été imprimé en 70h (plus 5h de finition), en utilisant la technique dite DMLS pour Direct Metal Laser Sintering (Frittage Laser Direct Metal en français) afin de réaliser l’impression en aluminium. Cette technique repose sur la fusion successive par laser de couches de poudre de métal, en l’occurrence de l’aluminium. C’est une technologie éprouvée, utilisée déjà en contexte de production – la vidéo ci-dessous illustre la technique.

 

L’arme est donc réalisée par une combinaison de différentes techniques d’impression 3D (ainsi, la gâchette est réalisée en alliage d’acier, alors que le canon est en aluminium). L’intérêt est également de pouvoir, directement pendant la phase de fabrication, générer le rayage interne du canon en même temps que ce dernier est « imprimé ».

rambo3

L’US Army a ainsi procédé à 15 tirs de test sans aucune dégradation de l’arme, et avec une vitesse initiale (sortie de la munition de l’arme) égale à 95% de celle de l’original. Le test a eu lieu à Picatinny Arsenal (New Jersey) en utilisant un déclenchement à distance (faut pas charrier quand même).Mais ce n’est pas tout : l’US Army a demandé pour ce test que les munitions elles-mêmes soient également imprimées par fabrication additive.

rambo4

Pour cela, deux autres centres de recherche du RDECOM ont été sollicités : le US Army Research Lab (ARL) ainsi que le US Army Edgewood Chemical and Biological Center (ECBC). La munition considérée était fondée sur la grenade d’entraînement M781 40 mm, utilisée pour ce même lance-grenade. C’est une munition d’entraînement à basse vélocité, qui produit une signature orangée à l’impact.

rambo6

Le processus s’est révélé complexe. L’enveloppe de la munition a bien été facilement imprimée en nylon et fibre de verre. Mais le corps du projectile d’entraînement, en zinc, a dû être imprimé par un autre procédé, le processus DMLS ne fonctionnant pas. Ils ont utilisé une imprimante 3D pour imprimer un moule en cire, et par la technique de la cire perdue, ont réussi à obtenir un moule en plastique correspondant au corps du projectile. Il a ensuite suffi de verser de la poudre de zinc en fusion pour obtenir la pièce recherchée.

rambo5

L’essai est visible dans la vidéo ci-dessous, ainsi que la fabrication de l’arme et des munitions:

Cette expérience montre l’intérêt d’un processus optimisé de fabrication additive pour accélérer la mise en service d’un prototype (tout en diminuant les coûts de fabrication). Cette démonstration s’avère être un succès. Reste bien évidemment à tester la résistance de l’arme, sa durée dans le temps, sa robustesse lors d’une utilisation réelle (les tests correspondants sont en cours).

Mais attention également à ne pas laisser partir « dans la nature » les plans de conception CAO de l’arme. Car demain, de tels processus seront démocratisés, et de nouveaux équipements moins onéreux seront à la portée d’un plus grand nombre. La vigilance s’impose donc, à la fois pour éviter que nos ennemis ne puissent « imprimer » leurs propres armes, mais aussi pour prévenir toute tentative d’intrusion qui permettrait à des hackers d’introduire d’invisibles défauts dans les armes ainsi générées. La course continue…

droned3

Dans ce blog, nous parlons régulièrement des objets connectés et de leurs vulnérabilités (voir cet article sur la voiture connectée, ou celui-ci sur des armes « hackées »), et de fabrication additive (voir cet article sur la fabrication d’une arme par impression 3D). Voici que ces deux domaines se rejoignent : une équipe de chercheurs de l’Université Ben Gourion du Negev, de l’université SUTD de Singapour et de l’University of South Alabama vient de montrer que le piratage des outils de fabrication additive pouvait avoir des conséquences très concrètes, dans le monde réel.

Leur travail est intitulé « dr0wned – Cyber-Physical Attack with Additive Manufacturing » et consiste à effectuer une attaque Cyber Physique sur un matériel de fabrication additive. On rappelle que l’on désigne par le terme « Cyber Physique » un système où des éléments informatiques collaborent pour le contrôle/commande d’entités physiques.

Le principe est de voir comment, en s’intégrant à un processus de conception et de fabrication additive, un pirate peut introduire un défaut critique au cœur du processus. En l’occurrence, il s’agit de s’attaquer à l’ordinateur de contrôle de l’imprimante 3D. L’idée est de s’intégrer au processus (« workflow ») présenté ci-dessous.

droned1

Ce workflow montre, avec un certain niveau d’abstraction, les étapes et multiples acteurs qui collaborent au sein d’un processus de fabrication additive. Il s’agit dans un premier temps de s’insérer dans les fichiers de conception d’un composant critique (ici l’hélice servant à la propulsion d’un drone), en utilisant des techniques classiques de « phishing » (envoi d’un mail anodin avec une pièce jointe infectée). Cette pièce jointe permet de créer une voie d’accès vers les fichiers de CAO contenus dans l’ordinateur infecté (un peu d’ingénierie sociale permet de cibler le bon utilisateur au préalable).

En utilisant des logiciels classiques de CAO, le pirate peut alors introduire des défauts en prenant soin que ces derniers soient invisibles à l’œil nu – en l’occurrence, les chercheurs ont introduit des zones creuses, donc fragiles, au sein de la structure de l’hélice qui doit être « imprimée » (près de l’axe). Le fichier est alors remplacé dans l’ordinateur de la victime, qui servira de configuration pour l’impression 3D. Et le défaut est bel et bien invisible: dans l’image ci-dessous, l’hélice en haut est normale, alors que l’hélice du bas est sabotée.

droned4

Le résultat ? L’hélice est imprimée avec son défaut caché, qui, après quelques minutes de vol, provoque la chute et la destruction du drone.

droned5

Rien de révolutionnaire ici, si ce n’est la nature même de l’attaque. La fabrication additive (comme d’ailleurs l’Internet des Objets ou la robotique) permet de « donner des bras et des jambes » à Internet. Autrement dit, toute modification dans le cyber-monde a des effets très réels et très concrets sur le vrai monde. A ce sujet, je ne saurais trop vous conseiller de visualiser cet excellent film, ci-après, qui présente les dangers et vulnérabilités du monde merveilleux des objets connectés.

Comme le virus Stuxnet responsable de la destruction des centrifugeuses supposées servir au programme nucléaire militaire iranien l’a montré, un simple programme informatique peut donc provoquer une destruction physique. Il est donc nécessaire de s’intéresser à ce problème (en prenant en considération la généralisation des systèmes industriels de type SCADA : Supervisory Control And Data Acquisition, frameworks industriels d’instrumentation), et en particulier en anticipant les problèmes liés à la fabrication additive. Car aujourd’hui, on peut tout imaginer : après tout, on imprime d’ores et déjà des missiles à 80% en utilisant des techniques de fabrication additive (voir cet article). L’intérêt de ce travail est de montrer la maîtrise complète du processus, d’une attaque de phishing au sabotage des fichiers, provoquant la modification et la destruction physique du système rendu vulnérable.

L’article original est disponible ici.

missile1

Et ça marche! Après les armes de poing, les missiles. La société Raytheon a annoncé que ses ingénieurs avaient réussi à imprimer en 3D 80% des composants d’un missile : le moteur, les ailerons, et des composants nécessaires au guidage et à la navigation. L’image ci-dessus montre le moteur du missile en fonctionnement – or ce moteur a été créé par la méthode de fabrication additive (impression 3D).

missile3

La recherche aujourd’hui consiste, en sus des composants mécaniques plus traditionnels, à utiliser de telles techniques pour déposer des matériaux conducteurs afin de créer des circuits électriques. L’intérêt est aussi (outre la rapidité de création et la diminution des stocks) de pouvoir expérimenter des structures plus légères et optimisées en termes d’isolation thermique, et de tester presque immédiatement les prototypes.

missile2

L’image ci-dessus montre les composants « imprimables » (ceux qui ne sont pas en métal) d’un missile. A terme, même les connecteurs pourront être créés de cette manière. Le principe en lui-même n’est pas nouveau : Lockheed Martin a même déposé en 2006 un brevet sur la conception et l’impression en 3D de têtes militaires. Et pour tous ceux que cela intéresse, je vous conseille la lecture (même si la mise en page est surréaliste) du numéro spécial de Army Technology ci-dessous (cliquez sur l’image pour le télécharger).

missile4

PS. Je rappelle que ce blog va fonctionner à un rythme ralenti en cette période estivale. Encore une fois, ce n’est pas un abandon, ou un manque d’inspiration. Juste un gros besoin de vacances.