moab7

Vous vous souvenez sans doute, il y a quelques semaines, du largage en Afghanistan par l’US Air Force de la bombe GBU-43/B Massive Ordnance Air Blast – ou MOAB (aussitôt surnommée Mother Of All Bombs et même « Frankenbomb »). Il s’agit de la plus puissante bombe non nucléaire disponible dans l’arsenal américain : une bombe de 9800 kg, contenant plus de 8400 kg d’explosifs H6, soit un équivalent de 11 tonnes de TNT, pour un prix modique de 16 millions de dollars par unité.

moab5

La vidéo ci-dessous montre le largage du monstre, effectué le 12 avril dernier, contre un complexe de l’état islamique en Afghanistan.

L’US Air Force a récemment annoncé travailler sur une « mini-MOAB », avec la volonté de développer une bombe plus petite, et avec effet de souffle sélectif. Explications.

L’idée est en fait d’avoir, avec une même bombe, la possibilité d’avoir un effet de souffle restreint ou plus large. On rappelle qu’une bombe de type « airburst » est conçue pour exploser à quelques mètres du sol et non à l’impact. Guidée par GPS, sa trajectoire de chute est contrôlée par une centrale inertielle avec une précision à l’impact de 8m. Pas très discriminant, mais comme le disait l’autre « elle détruit tout, y compris ce qui est visé » ( !).

moab6

La hauteur de l’effet de souffle peut être contrôlée ; l’avantage est que cette hauteur est directement liée à la puissance destructrice de la bombe, notamment car l’onde de choc est réfléchie par la surface. L’image ci-dessous illustre le concept.

moab2

Si l’on désolidarise le détonateur de l’enveloppe de la bombe elle-même, on peut distribuer différents détonateurs sur la bombe, afin de pouvoir contrôler les modalités de la mise à feu lorsque cette dernière approche sa cible. Ce faisant, l’onde de choc est contrôlée et modulée en fonction de ce qui est souhaité. Cela permet également d’améliorer la résilience de l’arme, en disposant de plusieurs détonateurs redondants.

Mais distribuer de tels détonateurs n’est pas évident en utilisant des techniques conventionnelles de fabrication. C’est notamment pour cette raison que les ingénieurs de l’Air Force Research Lab ont imaginé pouvoir utiliser des techniques de fabrication additive (impression 3D) pour concevoir cette bombe. Ils viennent de dévoiler un prototype à l’échelle 1 :7 lors de la journée « Department of Defence Lab Day » organisée au Pentagone.

L’impression 3D permet de concevoir des prototypes de détonateurs externes modulaires, qui sont intégrés au sein de la bombe – c’est l’image ci-dessous. C’est donc l’illustration du concept de bombe à effet de souffle sélectif.

moab3

On pourrait dire que ce prototypage peut être réalisé sans utiliser de techniques de fabrication additive. C’est exact, mais la réflexion de l’US AFRL va plus loin, et cette fois-ci, l’impression 3D se révèle indispensable. C’est une question de poids et d’efficacité.

L’enveloppe externe en aluminium d’une bombe airburst classique comme la MOAB, bien que fine, a une épaisseur d’environ 5 cm. Cela a pour effet de générer de très nombreux débris, mais également de limiter la taille de l’explosion. Pour diminuer cette enveloppe, l’idée est de conserver une intégrité structurelle en répartissant le poids de l’enveloppe jusqu’à l’intérieur de la bombe elle-même. Pour ce faire, des pièces spécifiques en acier sont conçues via impression 3D. Ressemblant aux traverses de la tour Eiffel, l’idée est d’alléger au maximum la structure en intégrant des renforts jusqu’au cœur de la bombe (image ci-dessous).

moab4

L’idée est également de rendre la bombe plus compacte, et plus adaptée aux systèmes d’emport des avions modernes, avec souvent l’existence d’une trappe à munitions.

On voit ainsi la généralisation des techniques de fabrication additive, avec des technologies qui permettent aujourd’hui (même si dans le cas présenté il s’agit essentiellement d’un prototype) des gains en termes de poids, l’optimisation de structures, la conception d’équipements plus compacts, et surtout l’émergence de nouveaux concepts (comme ici la modulation de l’effet de souffle).

Publication repoussée

Publié: 23 mai 2017 dans Non classé

Par respect pour les victimes du drame de Manchester, la publication du prochain article sur ce blog est repoussée à demain mercredi 24 mai.

deuil

 

molec2

Note préliminaire : étant directement impliqué dans le Hackaton Marine Nationale qui vient de s’achever, je prie mes lecteurs de m’excuser pour le rythme ralenti de publication de ces derniers jours : mon travail m’occupant la journée, et le Hackaton mes nuits (en tant qu’officier de réserve), il m’était difficile de poursuivre intensément toutes mes autres activités.  

Nous avions déjà parlé de l’ordinateur quantique et de ses implications pour le monde de la défense (voir par exemple cet article). La société IBM annonce d’ailleurs avoir développé et déployé deux nouveaux ordinateurs quantiques à 16 et 17 qbits, au sein de son centre de recherche Q Lab (ci-dessous), un progrès significatif dans la mesure où leur prédécesseur ne comportait que 5 qbits.

molec1

L’ordinateur quantique est l’une des révolutions portées par un nouveau domaine, l’informatique moléculaire (molecular informatics en anglais). Comme son nom l’indique, il s’agit de stocker et de traiter l’information en se fondant sur les propriétés des molécules, au lieu d’utiliser le silicium. Il s’agit d’un nouveau champ de recherche, mêlant informatique, chimie, mathématiques et ingénierie.

L’idée en soi n’est pas nouvelle ; elle consiste à utiliser les propriétés des molécules : charge, structure, volume, polarité… pour concevoir de nouveaux modèles de calcul et de stockage, allant bien au-delà des capacités des machines traditionnelles. Plusieurs expérimentations sont en cours depuis longtemps. Ainsi, on connaît les puces « à ADN » (à ne pas confondre avec les DNA Chips, des dispositifs de biologie moléculaire), qui ont vu le jour en 1994. Inventé par un chercheur, Leonard Adleman, le principe repose sur les propriétés de la molécule d’ADN. Il s’agit de coder un problème non avec des 0 et des 1 mais en utilisant les quatre constituant fondamentaux (bases) de l’ADN : la Cytosine, la Guanine, la Thymine et l’Adénine (oui, je suis biologiste au départ). En gros, on code un problème en utilisant des séquences A,T,G,C dans une molécule d’ADN. Juste pour rappeler :  les bases A se lient aux T, les G se lient aux C ; cette propriété permet d’hybrider deux molécules d’ADN, ou d’en lier certaines séquences.

molec3

En utilisant ce principe, on peut trouver une solution à un problème de recherche combinatoire (en utilisant toutes les combinaisons de molécules, et leur hybridation, ce qui réalise, en quelque sorte, un ordinateur parallèle), mais on peut également créer des « portes logiques » (des « aiguillages logiques », à la base de l’informatique, comme ET, OU, XOR…) en se reposant sur les liaisons entre molécules d’ADN. Je ne rentre pas dans les détails, voici par exemple un article expliquant le principe, dans des termes assez simples.

L’intérêt, c’est de pouvoir, dans un volume très réduit, disposer de millions de milliards de molécules, constituant ainsi un ordinateur parallèle extrêmement compact. Cela permet donc de pouvoir, en théorie, traiter des problèmes complexes : optimisation combinatoire, apprentissage, analyse de signal ou d’image, etc… Bien évidemment, si cela fonctionnait aujourd’hui, cela se saurait. Les limitations sont dues à la complexité – et à la lenteur – de cette technologie. C’est pourquoi ce champ de recherche est resté « en friche » depuis deux décennies.

molec4

Ce qui explique l’explosion du domaine aujourd’hui, c’est que le volume et la complexité des données devant être traitées et stockées (« Big Data ») mène les architectures informatiques classiques à leurs limites. Il devient donc urgent de trouver des moyens efficaces de traiter l’information, mais aussi de la stocker. L’informatique moléculaire répond à ces deux impératifs.

Reprenons notre exemple de l’ordinateur à ADN. Des chercheurs de l’université de Manchester ont montré qu’il était extrêmement intéressant dans le domaine du stockage de l’information, grâce à sa propriété d’auto-réplication. Là aussi, simplifions : un gramme d’ADN peut stocker l’équivalent d’un Téraoctet d’informations. Mais surtout, l’ADN peut s’auto-répliquer. On a donc l’équivalent d’un disque dur capable d’augmenter sa capacité en cas de besoin. Cette propriété d’auto-réplication peut d’ailleurs être également utilisée en termes de calcul, pour explorer deux voies de recherche à la fois.

Imaginez donc les implications : des ordinateurs parallèles et des bases de données gigantesques tenant dans un volume extraordinairement compact. Bon, le souci c’est notamment le prix : l’ADN doit être synthétisé et cela coûte cher. On estime que le stockage d’1 MB en utilisant l’ADN coûterait aujourd’hui entre 10000 et 15000 EUR.

molec5

Il y a donc de nombreux défis inhérents à la technique de l’informatique moléculaire. Mais le domaine est en plein développement, qu’il s’agisse d’élaborer des mélanges moléculaires complexes pour le calcul, de développer des portes logiques biomoléculaires, ou de synthétiser de nouveaux polymères (la liste n’est pas exhaustive). Par exemple, les molécules polyoxométalates (POM) – ci-dessus- peuvent agir comme des nœuds de stockage permettant de créer des mémoires Flash à l’échelle nanométrique.

Pour développer le domaine, il faut, en particulier, dépasser les limitations de l’ordinateur à ADN, qui nécessite d’utiliser un ordinateur traditionnel pour récupérer et traiter l’information, ralentissant donc singulièrement le processus, et diminuant l’intérêt du système.

DARPA Vector Logo.eps

C’est pourquoi la DARPA vient de lancer un appel à propositions, afin d’identifier des programmes et pistes de recherche permettant de lever ces limitations. Car l’implication pour le monde de la défense est considérable, dans des domaines comme le traitement d’images pour la reconnaissance, la guerre électronique, le renseignement SIGINT, le traitement des données sur le théâtre d’opérations, etc.

La première phase (18 mois) du programme de la DARPA consistera à élaborer des stratégies de codage de l’information et de calcul en informatique moléculaire. La seconde phase (de 18 mois également) consistera à intégrer et démontrer la pertinence de ces stratégies en codant et en traitant de gros volumes de données. Le défi ? Démontrer la capacité de traiter et stocker 1 GB de données en utilisant un système biomoléculaire d’une densité de 1018 octets par mm3 !

Pour les lecteurs intéressés, l’appel à propositions de la DARPA peut être trouvé ici. Vous avez jusqu’au 12 juin, donc bon courage 🙂

cry0

Vous avez peut-être suivi il y a quelques semaines la divulgation d’informations confidentielles de la NSA par le groupe TheShadowBrokers, dont l’objectif était de crier leur insatisfaction dans le contexte de la présidence de Donald Trump. Oh, pas pour protester contre les différents décrets, mais pour manifester leur colère… Le Donald aurait en effet « abandonné sa base », et les aurait déçus de ne pas en faire assez. Pour protester notamment contre l’éviction de Steve Bannon du Conseil de Sécurité, ou encore pour manifester contre l’attaque en Syrie en représailles à l’utilisation d’armes chimiques, ces petits génies ( !) ont décidé d’offrir au monde les nouveaux outils de surveillance de la NSA.

cry7

Pour ce faire, ils ont hacké des systèmes utilisés par Equation, un groupe lié à la cellule TAO de la NSA : TAO pour Tailored Access Operations. Un euphémisme pour un service dont le métier est d’infiltrer, de renseigner, de hacker, donc, les systèmes informatiques potentiellement utilisables contre les Etats-Unis (ce qui en soi, n’est pas un critère très limitatif).

Ce faisant, la boite de Pandore s’est non seulement ouverte, mais a allégrement déversé un flot de potentielles menaces ; en divulguant les techniques de prise de contrôle et de piratage utilisées par la NSA, ils ont ainsi pu gentiment expliquer à tous les gentils pirates en puissance comment faire pour hacker n’importe quelle machine. Bon, compte tenu de l’anglais des hackers de Shadow Brokers, plane l’ombre de certains pays. Un sujet d’actualité. Même si l’on pense que la motivation initiale du groupe était plutôt financière, la divulgation publique des outils de la NSA ayant été précédée d’enchères infructueuses.

Dernière conséquence en date : le « ver » WannaCry. Rappelons qu’un ver informatique (worm en anglais) est un programme autonome souvent nocif, capable de s’auto-reproduire en utilisant les mécanismes et protocoles réseau. En l’occurrence, il s’agit d’un « ransomware » dont le principe est simple : soit vous payez, soit vos fichiers sont cryptés et inutilisables à jamais.

Ce programme, baptisé WannaCry, ou Wanna, ou encore Wcry, aurait infecté environ 60 000 ordinateurs aujourd’hui. Bizarrement, c’est la Russie qui est la plus touchée, comme le montre le tableau ci-dessous.

cry1

Mais le souci, c’est que les principales machines infectées le sont dans de grandes organisations : des banques (BBVA, Santander), des hopitaux (l’hôpital anglais Victoria de Blackpool), des services de communication… Des sociétés comme FedeX ou les opérateurs espagnols Telefonica ou Vodafone Espana sont massivement touchées (plus de 85% des ordinateurs de Telefonica !). Tout comme (et c’est très inquiétant) Iberdrola, un fournisseur d’énergie espagnol. Et la liste n’est pas exhaustive.

cry6

Wcry ne fait pas uniquement que crypter : il utilise aussi une « arme informatique » nommée EternalBlue, développée par la NSA pour prendre le contrôle d’ordinateurs Windows à distance. Le ver Wcry se transmet ainsi de machine en machine, sans avoir besoin que l’utilisateur ouvre un mail ou un fichier.

Les auteurs du ver Wcry ont émis un ultimatum : Une rançon de 300 à 600 euros en équivalent bitcoins doit être payée pour chaque PC infecté avant le 15 mai (ou en dernier recours avant le 19 mai mais c’est plus cher). Faute de quoi, l’ordinateur restera inutilisable à jamais. Rappelons pour mémoire qu’au moment où vous lisez ces lignes, le bitcoin vaut environ 1540 EUR. Donc moins de 1 bitcoin par ordinateur, mais il faut multiplier par le nombre d’infections.

cry4

Ce qui est dommage, c’est que Microsoft avait émis un patch pour éliminer la vulnérabilité exploitée par Eternalblue en mars 2017, comme le montre le bulletin ci-dessous.

cry2

Tout ceci montre une certaine frénésie aujourd’hui autour des ransomwares, et les conséquences exponentielles d’une divulgation (et franchement, bravo à Equation, pour des guerriers du cyberespace, le fait de se faire voler des informations, c’est comme se faire dérober du plutonium quand on construit des armes nucléaires). Comme le montre la carte ci-dessous, l’effet est immédiatement international.

cry3

Cela montre également, s’il en était besoin, l’extrême vulnérabilité de certaines de nos infrastructures. Même si la France n’est pas touchée aujourd’hui, attention à tous nos réseaux et nos automates industriels de contrôle (les SCADA). Car la prise en otage d’une centrale nucléaire ou d’un réseau de transport d’électricité, ce n’est hélas plus aujourd’hui de l’ordre de la science-fiction.

2017-04-04-FR-pres-gen-ISL (003)

Pour une fois, et cela fait plaisir, je fais un focus sur de l’innovation qui n’est pas originaire d’outre-Atlantique. Au passage, je rappelle que ce fort tropisme américain n’est en rien une volonté ou un parti-pris de ce blog, mais bien une conséquence des budgets impressionnants de R&D de défense dont disposent nos amis américains. Snif.

Lors d’une visite organisée avec le GICAT (Groupement des Industries de Défense et de Sécurité terrestres et aéroterrestres) et son équivalent allemand, le BDSV (Bundesverband der Deutschen Sicherheits- und Verteidigungsindustrie) – voir photo ci-après – j’ai pu constater de visu la grande qualité des réalisations technologiques de l’ISL.

isl1

Rappelons que l’ISL (Institut Saint-Louis) est la plus ancienne coopération franco-allemande en matière de défense (elle hérite du LRSL créé en 1945, la création de l’ISL dans sa forme actuelle datant de 1959). L’ISL est une initiative conjointe de recherche franco-allemande, un schéma original et innovant, qui permet à cette institution de conduire des projets de recherche fondamentale, mais allant jusqu’à développer des innovations et de la recherche finalisée au profit des opérationnels.

Il fallait bien choisir un sujet parmi tous les projets de l’ISL. Donc, au menu pour cet article : les armes nouvelles, et en particulier les lasers et canons  électromagnétiques.

J’avais déjà mentionné à plusieurs reprises dans ce blog (voir par exemple cet article ) les armes à énergie dirigée, et en particulier les lasers. L’ISL travaille intensément dans le domaine, l’objectif des travaux réalisés par l’Institut étant de confirmer à la fois la faisabilité technique, et les bénéfices opérationnels escomptés pour ce nouveau type d’armes.

isl8

En l’occurrence, la question posée est d’identifier une source pour une future arme laser. Or l’exercice est loin d’être simple. En premier lieu, la puissance doit être au minimum de 100kW moyens, pendant quelques secondes. Il est en effet irréaliste de devoir maintenir trop longtemps un faisceau sur une cible, faute de puissance.

Mais la difficulté ne s’arrête pas là : les chercheurs ont en effet un autre objectif, dont on parle peu : la sécurité oculaire. Car une arme laser, c’est potentiellement quelque chose qui peut à la fois blesser son utilisateur, et occasionner des dommages collatéraux importants. Le laser ne s’arrête pas au bout de quelques mètres : il peut parcourir des centaines de kilomètres et mettre en danger la population. Sans compter que les conventions internationales sont strictes : toute arme potentiellement aveuglante doit respecter le protocole de la Convention de Vienne (1980).

L’ISL a donc entrepris des travaux de recherche en 2006 pour trouver une source laser opérationnellement acceptable pour cette future arme laser. Ces travaux ont mené au développement d’un premier démonstrateur baptisé MELIAS II, en 2010, respectant ces contraintes. Il s’agit d’un laser de 5kW, dont j’ai pu assister à un tir impressionnant. Impressionnant car la plaque de bois a été perforée immédiatement (10 ms), et impressionnant car nous n’avions pas besoin de porter de lunettes : ce laser émet en effet à des longueurs d’ondes non dangereuses pour l’œil humain (supérieures à 1,4 micromètres). C’est ce que l’on appelle le domaine spectral à sécurité oculaire (en l’occurrence, l’acronyme MELIAS signifie Medium Energy Laser In the eye-sAfe Spectral domain).

isl2

Depuis MELIAS II, l’ISL a développé MELIAS II+, actuellement en fin de montage. C’est un laser Er3+ YAG (Erbium-doped yttrium aluminium garnet laser) à capacité thermique, compact, simple d’emploi et à sécurité oculaire dont la puissance est aujourd’hui de l’ordre de 30kW, extensible à 100 kW. L’ISL a d’ailleurs développé une technologie de barillet permettant d’effectuer de nombreux tirs sans refroidissement.

isl3

Il s’agit encore d’installations de laboratoire, mais les premiers tirs sont prévus à la fin de l’année 2017.  L’objectif : utiliser ce type de laser pour neutraliser des drones, ou des menaces de type RAM (Roquettes/Artillerie/Mortiers).

Parlons maintenant d’un autre type d’armes : les « railguns » ou canons électriques ou électromagnétiques. L’objectif est de propulser un projectile à environ 3000 m/s de vitesse initiale sans utiliser de poudre propulsive, en établissant une différence de potentiel électrique entre deux rails parallèles conducteurs. Lorsque le courant électrique circule entre les deux rails, un champ magnétique se crée, permettant d’accélérer le projectile. Nous en avions déjà parlé, en particulier dans cet article.

Railgun_usnavy_2008

Une telle arme possède des avantages indéniables : pas de nécessité de stockage de matériaux dangereux (c’est l’impact du projectile, donc uniquement l’effet cinétique, qui provoque la destruction, même si des projectiles explosifs peuvent être employés, et la propulsion ne nécessite pas de poudre), un tir très peu onéreux, une cadence élevée, de l’ordre de 50 tirs par seconde, et une portée très importante – le railgun de l’ONR américain vise ainsi à atteindre une portée de 300 à 400 km.

Dans ce domaine, la France (et l’Allemagne) n’est pas à la traîne. L’ISL a ainsi réalisé un démonstrateur, le NGL60 (car doté d’un calibre 60x60mm) : un tube mesurant aujourd’hui 2m (extension prévue à 6m) et muni de nombreux condensateurs (voir la photo ci-dessous). Si les canons américains, bien plus onéreux, ont une énergie de bouche aux alentours de 30 MJ (petit rappel : une mégajoule d’énergie est équivalente à l’énergie d’une voiture d’une tonne, voyageant à 160km/h), le NGL60 est déjà à 10MJ soit l’énergie typique du canon d’un char lourd. La technologie développée par l’ISL permet un fort taux de conversion d’énergie électrique en énergie cinétique (> 35%).

isl4

Mais l’ISL a également développé un démonstrateur de canon électrique haute cadence. Baptisé RAFIRA (pour RApid Fire RAilgun), il permet de tirer des salves de cinq tirs consécutifs à une fréquence de 75Hz, sans nécessité de « gatling », c’est-à-dire sans devoir échanger le tube. L’intérêt d’une telle cadence est de pouvoir envisager un emploi antimissile (qui nécessite de dépasser le 50 Hz), chaque projectile subissant une accélération de plus de 100 000g ( !) et étant propulsé à plus de 2400 m/s.

isl5

Au-delà, avec RAFIRA, l’ISL a développé un concept de salve « intelligente », permettant de gérer individuellement l’accélération de chaque projectile, pour anticiper une trajectoire ou au contraire faire arriver simultanément tous les projectiles sur une cible.

Bon, j’aurais aussi pu parler des « générateurs XRAM inductifs compacts, comprenant la source primaire d’énergie à accumulateurs lithium-ion et des commutateurs répétitifs haute tension à diélectrique liquide et à formation d’impulsions, permettant ainsi des largeurs d’impulsion inférieures à la nanoseconde et un champ de claquage record de 14 MV/cm. ». Mais comme je n’ai pas (tout) compris, je préfère laisser cela à la sagacité du lecteur averti (pour le coup, le texte vient du site de l’ISL).

isl6

Pas besoin de cela pour convaincre des capacités de l’ISL. Même si c’est un peu loin – bon, très loin – lorsque l’on est comme moi parisien, il s’agit d’un lieu unique rassemblant dans un contexte de coopération multinationale des talents incontestables. Et des chercheurs passionnés.

helico3

Cette annonce s’inscrit dans le cadre du programme FVL, qui signifie Future Vertical Lift concept. Et il ne s’agit pas d’un unique hélicoptère, mais d’un concept destiné à renouveler l’intégralité de la flotte américaine d’hélicoptères de combat. Voici le déroulé du programme (image ci-dessous) : il demande un peu d’explications.

helico9

Tout a commencé avec le X2, un concept développé par Sikorsky Helicopters (une filiale de Lockheed Martin), de son vrai nom X2 Technology Demonstrator (ci-dessous).

helico1

Fondé sur un prototype baptisé XH-59A, il s’agit d’un concept d’engin à voilure tournante doté de deux rotors rigides contrarotatifs. En 2010, l’engin a établi un record de vitesse, en atteignant 250 nœuds soit environ 460 km/h (record précédemment détenu par le Westland Lynx ZB-500).

Le concept X2 mettait en œuvre un système d’atténuation des vibrations en vol, en modulant les vitesses des deux rotors opposés, permettant – outre un confort accru – de minimiser la signature acoustique de l’engin. Outre un système de propulsion par turbine, les deux rotors coaxiaux comprennent des pales rigides, coaxiales, en composite – cela permet à l’engin d’être performant à basse vitesse, et d’avoir une transition simple et fluide vers la haute vitesse.  Enfin, le X2 est totalement conçu autour d’une architecture dite Fly-by-Wire : toutes les commandes de vol sont électriques.

helico2

Le nouveau concept FVL, qui sera développé par Sikorsky et Boeing, reprend ces éléments innovants du X2 : deux rotors coaxiaux contrarotatifs, un système de turbopropulsion, une réduction active des vibrations, mais aussi des pales rigides repliables, une capacité de ravitaillement en vol, un fuselage entièrement conçu en composites, un design permettant de réduire la traînée aérodynamique. Le FVL serait capable d’atteindre des altitudes de 10 000 pieds, et un vol stationnaire à 6000 pieds en toute sécurité. Mais Sikorsky et Boeing restent très discrets sur les véritables capacités de l’engin, notamment son rayon d’action. Ce dernier devrait être environ 3 fois supérieur à celui des meilleurs hélicoptères actuels.

helico4

Dans certaines versions, le FVL sera capable d’embarquer un maximum de douze passagers, et nécessite un équipage de 4 personnes. Sikorsky a déjà dévoilé une première version, le S97-RAIDER, dont le premier vol a eu lieu en 2015 et qui a permis, dans la ligne du X2, de valider définitivement le concept.

helico5

Le premier hélicoptère du programme FVL a donc été dévoilé ce mois-ci par les deux industriels : le Sb>1 Defiant – l’objectif est de remplacer par le même engin les hélicoptères Apache AH 64 (hélicoptère d’attaque) et le UH 60 Blackhawk (hélicoptère de transport). Cet engin correspond au sous-programme dit FVL-medium. Un autre sous-programme, le FVL-Heavy, vise à donner un successeur au CH-47 Chinook – il sera développé autour d’un concept semblable au Defiant.

helico6

A priori, les deux engins devraient hériter de la même plateforme (mêmes moteurs, même train, même propulsion arrière, avionique commune, même système de gestion du carburant). Le design global du FVL Heavy est toutefois encore confidentiel.

helico7

Mais le Defiant a également un concurrent, le V-280 Valor développé par Bell, et qui utilise un concept tilt-rotor (les nacelles sont capables de basculer en vol, pour passer d’un mode hélicoptère à un mode avion).

Le choix définitif -en tout cas en ce qui concerne l’armée de terre américaine – se fera après une campagne d’essais comparatifs en vol, qui devrait s’achever en 2019. En attendant, voici la vidéo (en images de synthèse) que Sikorsky et Boeing ont décidé de rendre publique (ci-dessous).

 

sc26

Encore un projet (de plus) porté par la (désormais trop) récurrente DARPA. Le Colosseum (Colisée en anglais) porte bien son nom : implanté dans le Maryland au sein du Johns Hopkins University Applied Physics Laboratory (APL), il s’agit d’un nouvel équipement qui vient d’être mis en service. Et effectivement, il est impressionnant.

Son objectif : constituer un environnement expérimental permettant de créer et d’étudier de nouveaux concepts pour la gestion de l’accès au spectre électromagnétique civil et militaire. Très concrètement, il s’agit d’une pièce de 6mx10m, remplie de racks de serveurs. Pas vraiment impressionnant, du moins sur le plan physique. Dans le monde virtuel, c’est autre chose.

sc23

Car le Colosseum est capable d’émuler plusieurs dizaines de milliers d’interactions possibles entre des centaines de terminaux sans fils : radios civiles et militaires, objets communicants, téléphones portables… C’est comme si l’on se trouvait dans un environnement d’un km2, empli d’objets communiquant simultanément et interagissant. Pour être encore plus clair, le Colosseum fait « croire » à ces radios qu’elles sont immergées dans un environnement donné, fixé par l’utilisateur : centre urbain, théâtre d’opérations, centre commercial, forêt vierge ou désert… Et il peut simuler plus de 65000 interactions entre 256 terminaux connectés, chaque terminal opérant comme s’il disposait de 100MHz de bande passante. En tout, le Colosseum manipule donc 25GHz de bande passante. Chaque seconde (oui, seconde), le Colosseum gère 52 Teraoctets de données. Pas mal…

Le Colosseum est une pièce centrale d’un projet baptisé SC2 pour Spectrum Collaboration Challenge, une compétition visant à changer radicalement la manière dont les futurs systèmes de communication sont conçus.

sc21

En l’occurrence, au lieu de pré-programmer ces futurs systèmes (comme cela est réalisé aujourd’hui dans la totalité des cas), le projet SC2 vise à développer des nouveaux systèmes de communication adaptatifs, capables d’apprendre en temps réel en fonction de l’environnement, de leur historique d’emploi, et des interactions avec les autres systèmes de communication.

sc27

L’idée est d’utiliser des technologies d’intelligence artificielle pour optimiser la stratégie de communication en temps réel : exploiter les failles dans le spectre électromagnétique, établir des partages de spectre, mettre en place des stratégies collaboratives permettant d’assurer la continuité et l’efficacité des communications entre plusieurs radios ou objets connectés. Les critères pour ce réseau radio « intelligent » de nouvelle génération (donc les règles du challenge SC2) sont de développer :

  • Un réseau radio reconfigurable
  • Un réseau capable d’observer, d’analyser et de « comprendre » son environnement (en termes de spectre électromagnétique)
  • Un réseau capable de raisonnement : quelle action entreprendre pour garantir une bonne communication dans un environnement donné
  • Un réseau capable de contextualiser : utiliser de l’apprentissage pour surmonter des aléas et exploiter au mieux le spectre électromagnétique
  • Un réseau capable de collaborer en travaillant avec d’autres systèmes, même nouveaux.

sc22

Pour émuler un environnement permettant de tester et d’entraîner cette intelligence artificielle, le Colosseum utilise 128 SDR (software defined radios ou radios logicielles). Ces radios sont couplées à 64 FPGAs (on va simplifier : des processeurs reconfigurables – image ci-dessous) permettant de moduler le comportement des radios logicielles pour reproduire les environnements électromagnétiques ciblés. Et tout cela dans un environnement de type cloud, permettant à plus de 30 équipes de recherche d’accéder au Colosseum (5 équipes en simultané), pour la compétition SC2.

sc24

Dotée d’un prix de 2 millions de dollars pour l’équipe gagnante, la compétition durera 3 ans, et s’achèvera donc début 2020 après trois phases, la dernière devant départager les deux meilleures équipes. Il s’agit une fois de plus de l’illustration de la créativité de l’agence, qui a souvent recours à ce type de « grand challenge » pour trouver des solutions originales et efficaces à des défis capacitaires. Pour plus d’informations, le site SC2 est ouvert et accessible en ligne: http://spectrumcollaborationchallenge.com/