rim7

Pour ceux qui – et j’en suis – sont des fervents fans du film de John Mac Tiernan « A la poursuite d’Octobre Rouge », tiré du livre de Tom Clancy et décrivant la défection d’un commandant de l’Octobre Rouge, sous-marin nucléaire russe de dernière génération muni d’un nouveau système de propulsion silencieux appelé « la chenille », voici une nouvelle intéressante et qui relance la course aux armements sous-marins.

En matière de propulsion sous-marine innovante, peu de pays comptent. Il y a bien évidemment les Etats-Unis et la Russie, la Grande Bretagne, la France, mais aussi, et c’est une nouveauté, la Chine qui annonce une technologie révolutionnaire susceptible de rendre les sous-marins de l’Empire du milieu virtuellement indétectables par les techniques conventionnelles.

rim6

Baptisé IEPS pour Integrated Electrical Propulsion System, et comme son nom l’indique, il s’agit d’un système de propulsion électrique silencieuse, fondée sur le principe de l’hydrojet. Pour être précis, il s’agit d’un « rim-driven pump-jet », que l’on pourrait traduire (je ne suis pas un expert) par « turbine à hydrojet sans axe ». En gros, les pales sont encapsulées dans un anneau, il n’y a pas d’axe, c’est l’anneau qui constitue le rotor du moteur électrique. Il est entouré d’un autre anneau, qui constitue le stator, le complexe rotor/stator étant étanche et scellé.

rim5

Les avantages : une maintenance facilitée car le propulseur comporte moins de composants mouvants, une conception compacte, mais surtout une réduction drastique de la cavitation et des vibrations, donc de l’empreinte sonore. Le Graal de la propulsion sous-marine militaire, donc. Nota: comme on me l’a justement reproché, j’ai trop simplifié dans la version initiale de l’article: la cavitation hydrodynamique est donc la formation de bulles de vapeur dans l’eau par l’action mécanique de l’hélice (théorème de Bernoulli), soit la vaporisation de l’eau par la baisse de pression générée par le mouvement (en gros, la pression du liquide est abaissée au-dessous de sa pression de vapeur saturante, ce qui amène le liquide à ébullition). Les bulles étant transitoires, puisque leur apparition élimine les conditions qui leur ont donné naissance, cela amène à l’implosion des bulles de vapeur, ce qui crée une onde de choc notamment sonore, aisément repérable au sonar.

Ce n’est pas en soi un nouveau concept : les premiers propulseurs de ce type ont été mis sur le marché en 2010 notamment par des sociétés allemandes ou néerlandaises, comme « pods » auxiliaires de propulsion. Dans le cas chinois, le système IEPS est à la fois un système de propulsion, et un système de génération d’énergie électrique. Selon l’Etat-Major de la Marine Chinoise (PLAN), l’objectif d’IEPS était également de pouvoir emporter à bord le système d’armes « high-energy radio-frequency » (HERF), une arme à énergie dirigée qui nécessite une puissance électrique importante pour fonctionner.

Ce qui différencie la solution chinoise des systèmes préexistants, en tout cas d’après leurs (rares) annonces, c’est la performance – ce type de systèmes étant jusqu’alors peu efficaces, et limités à une propulsion auxiliaire. Visiblement, la Chine semble avoir injecté des financements suffisants (un sujet sensible chez nous en ce moment, comme quoi la recherche…) pour disposer d’un système véritablement efficace, en maîtrisant la complexité de sa conception.

rim2

Les ingénieurs américains travaillent sur de tels systèmes depuis environ 20 ans mais s’orientent sur des principes différents, comme les moteurs de type « permanent magnet » (moteur à aimant permanent) développés par General Dynamics, ou à superconducteurs (high-temperature superconducting (HTS) synchronous motors) développés par General Atomics et American Superconductors. Le destroyer de classe Zumwalt dont nous avons parlé notamment dans cet article utilise un tel moteur à induction, ainsi que les sous-marins de la classe Virginia ou de type 212 (avant les futurs Columbia – américain, ci-dessous – et Dreadought – anglais – prévus pour 2031).

rim9

La Chine compte équiper du système IEPC ses futurs sous-marins nucléaires lanceurs d’engins, de type Tang-Class 096 – voir ci-dessous la comparaison entre le type 096 en haut et son prédécesseur le 094 en bas.

rim4

Ce sont des bestioles capables de lancer 24 missiles balistiques intercontinentaux  JL-3. La Chine compte également équiper ses sous-marins nucléaires d’attaque de type 095.

rim8

La Chine a ainsi construit la plus grande base de sous-marins en Asie, à Yulin, avec une volonté de l’utiliser (elle comporte un tunnel sous-marin) pour envoyer discrètement ses engins en échappant à la surveillance satellite – d’où le besoin d’un système de propulsion furtif.

rim10

Toutefois, les experts – notamment américains – semblent sceptiques sur la véracité des déclarations chinoises ; sans toutefois expliquer clairement pourquoi. Il est clair que si la Chine a réussi à développer un tel système de propulsion électrique haute performance furtive, il s’agirait d’un avantage stratégique conséquent. Ce qui amène aujourd’hui les Etats-Unis, en particulier, à considérer une accélération de leur programme de détection et de lutte sous la mer, afin de détecter, pister et identifier ces nouvelles menaces… tout en soulignant (et c’est un peu amusant)… le risque de collision accidentelle avec un sous-marin chinois « trop furtif ». On croit rêver.

Si le programme est réel, et les progrès confirmés, les sous-marins chinois équipés pourraient connaître leur premier déploiement opérationnel en 2020.

IMG_1439

Nous avons l’habitude de beaucoup parler de drones dans le cadre de ce blog, car oui, les drones sont à la mode, et leur application au monde de la défense connaît un développement explosif. Dans ce paysage, peu de réelles nouveautés. Les drones multi-rotors se ressemblent tous, avec généralement une structure en carbone ou en aluminium, et une envergure relativement importante (particulièrement si l’on souhaite les emporter sur le terrain). Peu d’originalité donc, la plupart des fabricants se concentrant essentiellement sur les systèmes de guidage, de planification de mission, ou sur la charge utile. Et ces drones sont fragiles, ce qui limite leur utilisation dans un contexte opérationnel exigeant.

L’innovation que propose DIODON, jeune société toulousaine créée en mars 2017 (après tout de même deux ans de recherche et développement de ses fondateurs – nous y reviendrons), c’est de modifier la structure même du drone afin de le rendre tout-terrain.

DIODON_Montagne_1

Leur technologie permet en effet de développer des drones aériens multi-rotors à structures gonflables. A l’origine, c’est l’inspiration du Kite-Surf, hobby de l’un des fondateurs, qui a permis d’imaginer le concept : un drone qui se déploie en quelques secondes, par un seul opérateur muni d’une pompe légère. Les bras du drone se gonflent très rapidement pour former une structure robuste et incassable.

Initialement, la société avait imaginé cette technologie de drone tout-terrain pour le grand public et en particulier les sportifs, mais elle a récemment pivoté, afin de réorienter son innovation vers le marché professionnel en visant notamment les secteurs de l’industrie, de la sécurité et de la défense. Un mouvement courageux, et pas si courant que cela, dans le domaine des startups où le grand public est généralement vu comme plus rémunérateur que le marché professionnel.

IMG_1004

Malgré son apparente simplicité, ce concept nécessite une bonne dose d’ingénierie, car il s’agit de pouvoir garantir la précision de l’assemblage du drone, et notamment sa précision de pilotage, en utilisant des structures souples qui sont, par définition, difficiles à manier avec précision. D’où les deux ans de R&D nécessaires avant de fonder la société, et le dépôt d’un brevet sur le procédé.

Mais quels sont finalement les avantages d’un drone gonflable ? En premier lieu, la facilité de transport : le drone est léger, très compact lorsqu’il est dégonflé, et donc facilement transportable par un seul homme, en plus de son équipement usuel. Mais c’est aussi la robustesse : le drone peut atterrir sans dommage (il est son propre airbag), quel que soit le terrain : terrain accidenté, neige… ou même sur l’eau. Le DIODON est donc un drone ultra-portable, ultra-robuste et amphibie (il va sur l’eau comme sous la pluie), capable d’être déployé en quelques secondes dans toutes les conditions, mêmes les plus difficiles.

DIODON_eau

La start-up propose donc aux militaires et aux acteurs de la sécurité civile (pompiers, sauveteurs en montagne, forces de l’ordre) des solutions de reconnaissance et de surveillance en conditions difficiles. Pour atteindre ces clients exigeants, elle s’appuie sur une offre reposant sur la combinaison de différents vecteurs et charges utiles (voir le tableau ci-dessous).

diodon1

Les charges utiles sont diverses : caméras Full HD, FLIR, Vision nocturne ou même IA embarquée (nous y reviendrons)… Chaque DIODON dispose de sa station sol dédiée, avec retour vidéo et position GPS, interface tactile et contrôle manuel, et lien crypté. La portée est de 10km ce qui est amplement suffisant pour une grande variété d’applications.

IMG_1366

Dernière originalité de ce projet : les deux fondateurs sont en fait encore étudiants à l’Isae-Supaéro, et réussissent le prodige de développer cette activité en parallèle de leurs études. Chapeau. Voici un petit film réalisé à l’occasion du SOFINS, et qui présente la société.

La société DIODON (de son nom complet DIODON Drone Technology) souhaite étendre son offre à des applications SAR (Search & Rescue) en milieu alpin. En ce sens des démonstrations vont être organisées d’ici le début du mois de septembre dans des stations de ski des Pyrénées. Elle a participé (outre le SOFINS) au salon international de l’air et de l’espace du Bourget. Plusieurs régiments français et étrangers ont déjà évalué l’efficacité de la solution dans le cadre d’exercices en conditions réelles.

generate

La société DIODON fait partie des sociétés labellisées dans le cadre du programme GENERATE du GICAT – nous présenterons bientôt d’autres sociétés labellisées. Quand je vous disais que la France n’a pas à rougir de sa base industrielle et technologique de défense…

Pour contacter DIODON, suivre ce lien. Pour tout renseignement sur GENERATE, voici le chemin.

corti6

La vision artificielle a fait des progrès considérables dans ces dernières années, avec certes le développement de nouveaux capteurs, mais aussi en raison de l’apparition à la fois de processeurs spécialisés adaptés spécifiquement à cette problématique, et de nouveaux algorithmes, capables de fonctionner en temps réel, ce qui était inconcevable il y a quelques années. Dans ce domaine, de nombreuses sociétés apparaissent, mais celle-ci semble développer une approche originale, et que je pense assez adaptée (je vous dirai pourquoi).

corti1

Cortica est une société israélienne, issue du célèbre Technion, l’équivalent israélien du MIT. La société a été fondée en 2007 par trois chercheurs spécialisés dans l’informatique, l’ingénierie et les neurosciences, dont son dirigeant actuel, Igal Raichelgauz. Après avoir levé un financement d’environ 40M$, la société compte aujourd’hui une équipe conséquente de chercheurs en IA, mais également des experts militaires issus de la communauté israélienne du renseignement ( !) ce qui en dit long sur les applications visées.

L’approche de CORTICA est résolument inspirée par la biologie, et en particulier par le fonctionnement du cortex visuel primaire. Elle développe en effet une technologie d’apprentissage non supervisé (pour faire simple, je rappelle que l’apprentissage non supervisé a pour objectif de découvrir de la valeur dans des données qui ne sont pas structurées a priori, afin de réaliser une extraction de connaissances) afin de disposer d’une IA capable de comprendre l’image « comme un humain ».

corti2

En gros, l’IA cherche à identifier par elle-même des caractéristiques, des motifs (patterns), des relations entre différentes images, et ce de manière autonome, l’ambition étant – je cite – de constituer « un index universel visuel du monde ». Pour ce faire, la société a conçu une architecture d’apprentissage qui s’inspire du cortex visuel primaire des mammifères – peu de détails ont filtré, mais on peut imaginer en particulier qu’il s’agit de coder ce que l’on appelle des neurones à spikes – pour une description plus détaillée, je vous propose de relire cet article.

Cette architecture cherche à permettre un apprentissage non supervisé par observation, ce que l’on pourrait appeler de l’apprentissage prédictif (c’est le terme employé par Yann le Cun, chercheur en IA et directeur du laboratoire parisien d’IA de Facebook). En gros, au lieu de devoir constituer de grosses bases de données d’images « labellisées », donc traitées au préalable afin d’expliquer au système ce qu’il est supposé reconnaître, on présente à l’IA des images, et – comme un nouveau-né qui commence à observer le monde – elle apprend progressivement le sens et les relations entre ces différentes images présentées. Si je crois particulièrement à cette approche et surtout à l’inspiration biologique du cortex visuel primaire, c’est parce que dans ma – de plus en plus lointaine – jeunesse, j’ai travaillé au sein du groupe de bioinformatique de l’Ecole Normale Supérieure sur le sujet de l’apprentissage et de la vision active, inspirée de la modélisation des colonnes corticales du cortex visuel primaire, et que les résultats préliminaires, alors limités par la puissance de calcul dont nous disposions à l’époque, étaient déjà encourageants.

corti3

Cortica vise à déployer sa technologie en l’embarquant dans différents systèmes, qu’il s’agisse de véhicules autonomes, de systèmes automatiques d’analyse d’imagerie médicale, ou d’applications grand public. Mais on voit immédiatement le potentiel d’une telle technologie dans le domaine de la défense et de la sécurité. Le ROIM (renseignement d’origine image) a besoin de telles technologies afin de pouvoir très rapidement générer des « points d’attention » sur des images (images satellites, caméras de surveillance…) et leur donner du sens.

corti5

Il s’agit donc d’une tendance de fond en IA, qui bénéficie directement à la Défense, et qui est d’ailleurs accompagnée par l’émergence de nouveaux moyens de calcul dédié. Google a présenté récemment son Tensor Processing Unit (ci-dessus, et voir ce lien) qui met en œuvre une accélération hardware des réseaux de type Deep Learning. Mais les réseaux de neurones à spikes – tels que ceux a priori mis en œuvre dans la technologie de Cortica – connaissent un développement important, également en France.

Nous avions parlé dans ce blog du projet AXONE (ci dessous) soutenu par la DGA. Simon Thorpe, le chercheur à l’origine de cette technologie, dirige le CERCO, Centre de recherche sur le cerveau et la cognition (Cerco) – rattaché au CNRS et à l’université Toulouse-III. Via la structure Toulouse Tech Transfer (TTT), il vient de céder une licence d’exploitation de sa technologie de reconnaissance à BrainChip, spécialiste des solutions de reconnaissance pour la surveillance civile et qui avait racheté en septembre la société Spikenet Technology.

corti4

BrainChip utilisera cette technologie en vue d’optimiser son microprocesseur Snap, qui analyse en temps réel des flux vidéo. La tendance de fond semble donc se confirmer, avec de nouveaux acteurs en parallèle des Google, Facebook et autres géants, et avec des applications potentiellement considérables dans le domaine de la Défense et de la Sécurité. En attendant leur portage sur de futurs processeurs neuromorphiques, mais c’est une autre histoire.

Pour faire écho à mon récent billet d’humeur, on voit donc que les technologies d’IA commencent à atteindre un degré de maturité considérable, et suscitent un intérêt certain dans nombre de pays compte tenu des enjeux sous-jacents. A la France de maintenir et d’amplifier l’avance qu’elle possède dans le domaine.

apache2

Nous avons déjà parlé à plusieurs reprises de l’essor des armes à énergie dirigée par exemple dans cet article ou dans celui-ci. Le domaine est effectivement en plein développement, mais jusqu’alors, les tests ont été principalement effectués soit en laboratoire, soit sur des plateformes navales ou terrestres immobiles.

C’est donc avec un intérêt certain que les observateurs ont accueilli la démonstration qui vient de se dérouler sur le site de White Sands Missile Range, au Nouveau-Mexique. Elle consistait à utiliser un hélicoptère Apache afin de tester l’utilisation d’une arme laser connectée à une adaptation du système MSTS de Raytheon (l’essai ayant mobilisé des équipes de Raytheon, de l’US SOCOM – Special Operations Command – et de l’US Army).

apache1

Pour mémoire, le MSTS – pour Multi-Spectral Targeting System, ci-dessus –  est une boule optronique qui équipe les drones comme le Reaper. Il intègre à la fois des capteurs infrarouges, des capteurs CCDTV, un télémètre laser et un illuminateur laser, le tout étant stabilisé sur six axes. C’est un système utilisé pour faire du renseignement et de l’observation, mais également afin de réaliser de l’acquisition et de la désignation d’objectifs (traditionnellement, il est utilisé pour le guidage terminal des missiles Hellfire).

apache4

En l’occurrence, il s’agissait avant tout de valider le principe d’une arme à énergie dirigée équipant un hélicoptère, et utilisant un système de ciblage multi-spectral afin d’atteindre sa cible. Il s’agit bien d’une expérimentation : le laser équipant l’hélicoptère n’était pas un laser opérationnel, et d’ailleurs ni l’US Army ni Raytheon n’ont pris la peine d’en décrire les caractéristiques. Mais l’idée était de tester la faisabilité du concept d’une arme à énergie dirigée équipant un aéronef à voilure tournante. Dans le cas de l’hélicoptère Apache, compte tenu des points d’emport, le principe consiste à équiper l’hélicoptère d’un HEL (High Energy Laser), et de 12 missiles Hellfire (sur les points restants). L’image ci-après présente le concept.

apache3

Le test a permis de recueillir un grand nombre de données et, selon Raytheon, les résultats sont encourageants. Le film ci-après montre l’expérimentation, et l’on voit bien qu’il s’agit d’illuminer la cible et de maintenir la focalisation du laser.

L’expérimentation a permis de valider la faisabilité du concept, dans un grand nombre de configurations d’altitude, de vitesse et de régimes moteur. L’intérêt est de pouvoir trouver des stratégies afin de stabiliser le tir, et de tester les difficultés inhérentes à l’emploi d’un hélicoptère (vibrations, présence de poussière, souffle rabattant du rotor…). Reste encore à régler le problème de l’arme elle-même (et notamment de la puissance embarquée nécessaire à son opération, un paramètre qui conditionne l’efficacité de l’arme.

En revanche, les avantages sont clairs : une excellente précision, une trajectoire rectiligne (à la différence des trajectoires balistiques classiques), et une discrétion visuelle et sonore… ainsi qu’une réelle économie si l’on prend en compte le coût d’un missile Hellfire (110 000$/unité).

apache5

En revanche, un laser peut être réfléchi, dévié ou absorbé (même si réfléchir un laser à haute énergie requiert des matériaux composites difficiles à concevoir et à produire), et plusieurs armées (dont en particulier l’armée chinoise) sont en train de développer des contre-mesures adaptées aux armes laser – en particulier le JD3 – ci-dessus –  qui, outre ses caractéristiques d’arme à énergie dirigée, est conçue pour attaquer et neutraliser les désignateurs lasers ennemis.

apache6

D’ailleurs, l’armée chinoise est en train de réfléchir à des tests analogues, en montant ses lasers JD3 et ZM87 sur des hélicoptères de type Z-19E Black Whirlwind  (ci-dessus).  Un phénomène malheureusement prévisible : pas d’armement sans course aux armements…

Image1

Dans le contexte actuel de transformation profonde de l’Etat, et au moment où la nouvelle ministre des armées prend ses fonctions, je me permets un petit billet d’humeur sur le sujet de l’innovation technologique de défense, avec en toile de fond l’exemple – non limitatif – de l’intelligence artificielle.

Rappelons tout d’abord que la France a des atouts incontestables dans le domaine de l’innovation. C’est une nation majeure des mathématiques avec 13 médailles Fields décernées à des chercheurs français, elle possède une DGA, une particularité française, composée d’ingénieurs spécialisés dans les domaines de la défense et de l’armement. Elle siège au conseil de sécurité des Nations-Unies et possède une dissuasion nucléaire crédible. Malgré sa taille en regard de nos amis américains, russes ou chinois, la France tient son rang dans le domaine spatial (qui est loin d’être un sport de masse comme l’a montré l’échec du programme spatial brésilien), elle possède le second domaine maritime mondial, elle compte un écosystème dense de start-ups, de PME et de champions industriels, bref, nous ne sommes pas ridicules.

FieldsMedalBack

Mais aujourd’hui, l’innovation de défense est faite de ruptures (les nanotechnologies, la fabrication additive, l’internet des objets, …), de convergences, mais aussi de « game changers », d’innovations tellement critiques qu’elles conféreront aux pays qui les détiendront un avantage stratégique majeur. Et il est absolument indispensable de ne pas faire l’impasse sur ces « game changers », comme nous avons pu le faire dans le passé. L’exemple le plus illustratif, c’est le retard du programme français dans le domaine des drones (je ne commenterai pas).

Prenons l’exemple de l’intelligence artificielle qui est particulièrement illustratif. En soi, l’IA n’est pas un domaine nouveau. Les théories à l’origine de l’essor du « Deep Learning » (apprentissage profond automatique permettant à un ordinateur de faire de la reconnaissance vocale, de la reconnaissance faciale, la vision par ordinateur etc…) étaient connues depuis les années 50 (avec des progrès conséquents dans les années 80). Mais ce qui explique la progression exponentielle du domaine aujourd’hui, c’est la convergence entre des capacités de calcul sans commune mesure avec celles de la dernière décennie, une variété de techniques algorithmiques parfaitement explorées et identifiées, des capacités d’ingénierie abouties et une masse de données produites chaque jour permettant un réel essor de l’apprentissage machine. Une convergence permettant aujourd’hui un « big bang » incontestable du domaine.

bigbang

Or l’IA devient aujourd’hui un sujet stratégique. Aux Etats-Unis, c’est la notion de « third offset strategy» qui met l’accent sur les développements de l’Intelligence artificielle et les ruptures technologiques résultante (autonomisation des drones, robotique en essaim, …)

l’IA est ainsi devenue un outil de sauvegarde de la défense et de la souveraineté, de nature à générer une véritable rupture stratégique. Les avancées militaires liées à ce domaine ont été amplement discutées dans ce blog : capteurs abandonnés intelligents, plates-formes de renseignement, robotique autonome, simulation, etc…  Le document « Chocs Futurs » du SGDSN cite explicitement le sujet: « Le système de combat collaboratif, comprenant des composantes pilotées comme des composantes autonomes, bénéficiera d’une capacité d’analyse et d’un délai de réaction sans commune mesure avec un ensemble de systèmes pilotés par des humains. De ce fait, les armées qui disposeront de ces capacités bénéficieront des effets d’une rupture majeure dans l’équilibre des forces. »

aiautonomy

Il est donc absolument indispensable, de tenir notre rang dans ce domaine, et d’anticiper la généralisation de l’IA dans les systèmes militaires. Faute de quoi, entre les acteurs transnationaux comme les GAFA (Google Amazon Facebook Apple… mais la liste est bien plus longue) et les pays investissant massivement sur ces technologies, le risque pour la France est de perdre non seulement des parts de marché liées aux technologies du futur mais aussi des pans de son autonomie d’appréciation et d’action en Défense et Sécurité.

En matière d’IA, la France bénéficie de quelques atouts notables comme je l’ai mentionné en introduction. Son système de financement de la recherche et l’excellence des laboratoires de recherche appliquée, notamment en sciences mathématiques et informatiques en font un creuset reconnu d’experts de niveau mondial. Ce n’est d’ailleurs pas un hasard si l’un des laboratoires les plus en pointe dans le domaine, celui de Facebook, est implanté à Paris et dirigé par un Français, Yann le Cun.

Le domaine est également tiré par l’essor de l’Internet des Objets, un secteur dans lequel la France est en pointe (comme l’a montré le succès de la présence française FrenchTech au CES de Las Vegas).

CES

Pour que la France puisse développer et conserver son avantage, il faut trouver les moyens d’accélérer la transition entre la recherche académique, encore principalement financée par l’Etat, et l’industrie. Car aujourd’hui, ce sont parfois d’autres acteurs qui puisent dans le réservoir français de compétences issu des investissements étatiques et n’hésitent pas à investir pour financer la continuité du processus de maturation.

Soutenir, accompagner, investir dans la recherche sur l’IA, c’est pouvoir continuer à disposer d’une base industrielle et technologique de défense performante, à la fois pour garantir notre sécurité intérieure, prévenir toute surprise stratégique, mais également pour rester un pays influent dans le monde.

Pourquoi ce billet ? Parce que pour l’instant, même si la DGA lance un programme ambitieux sur le domaine, j’ai un sérieux doute sur la pérennisation des budgets de recherche et d’innovation, à l’heure où 2,7 milliards sont encore gelés. Le risque serait – par exemple pour le domaine de l’IA – de ne vouloir compter que sur le monde civil pour développer cette capacité, qui serait ensuite « adaptée » par les gentils industriels en autofinancement. A cela, deux commentaires.

En premier lieu, les technologies les plus « différenciantes » ont tendance… à être rachetées. A titre d’exemple, voici un graphique qui montre toutes les acquisitions récentes dans le domaine de l’IA par des grands acteurs transnationaux. Autant de technologies « perdues » ou diluées pour le monde de la défense.

ttimeline

Ensuite, la transposition ne peut être simple et directe. Tout n’est pas dual, et c’est bien le rôle des industriels de défense de travailler avec les start-ups, avec les laboratoires, avec la DGA, avec les Forces, pour pouvoir développer une technologie adaptée aux défis capacitaires actuels. Ne faisons pas l’erreur de croire que le monde civil va résoudre les problèmes des militaires: il faut maintenir un effort d’étude, de recherche industrielle, financée par la Défense afin de s’assurer d’aller assez vite, et surtout dans les bonnes directions.

imgp

Ne désarmons donc pas, ni dans ce domaine, ni dans d’autres domaines stratégiques comme les armes à énergie dirigée, le calcul et la cryptographie quantique, ou encore l’hypervélocité. Il en va de notre autonomie stratégique, de notre rang dans le monde, mais aussi du maintien de notre base industrielle. La recherche de défense doit être préservée, pour le succès des armes de la France.

owp2

Je sors un peu des nouvelles aéronautiques malgré la tenue du salon du Bourget (qui fut… chaud)  pour vous rafraîchir et m’intéresser au monde sous-marin, et en particulier à celui de la propulsion des drones sous-marins. Car l’essor actuel des véhicules robotisés cache également une difficulté majeure : assurer l’énergie nécessaire à leur propulsion, en particulier lorsqu’il s’agit de véhicules sous-marins. En effet, les drones sous-marins ou UUV (underwater unmanned vehicles) nécessitent de plus grosses batteries que leurs homologues aériens, avec une difficulté majeure : aujourd’hui, des batteries Lithium-ion de grosse capacité ont la fâcheuse tendance à prendre feu inopinément. Surtout en présence d’air, ou d’eau (voir le film ci-dessous).

Il y a donc un véritable enjeu à disposer de batteries plus compactes, mais restant puissantes, et plus endurantes afin d’assurer un rayon d’action important pour les UUV.

Une spin-off du MIT (Massachussetts Institute of Technology), baptisée OWP pour Open Water Power pourrait être sur la bonne voie – ils en sont en tout cas convaincus. Leur solution ? Une batterie reposant sur l’utilisation de l’aluminium…et de l’eau de mer.

owp1

Le principe est le suivant : la batterie (qui est en fait une pile à combustible) repose sur trois éléments : une anode en alliage d’aluminium actif et de nickel, un électrolyte alcalin et une cathode à émission d’hydrogène. Pas de risque d’incendie ici; il n’y a pas de lithium. Et tant mieux car une fois immergée, l’eau de mer est injectée à l’intérieur de la batterie.

L’anode est  essentiellement constituée d’aluminium et d’autres métaux non toxiques qui ont deux effets : permettre la réaction avec de l’eau de mer, tout en inhibant la corrosion de l’anode elle-même (faible réactivité en présence d’eau salée). L’image ci-dessous montre la structure de l’anode, en microscopie électronique à balayage (anode partiellement corrodée).

owp3

La cathode maintenant : elle permet de décomposer l’eau de mer en ions hydroxydes et en hydrogène gazeux. Plusieurs variantes de la cathode existent. La première photo montre la surface (en microscopie électronique à balayage) d’une cathode composée de platine plaqué sur du titane :

owp4

La seconde image présente une cathode constituée de nickel plaqué sur du carbone.

owp5

L’image ci-dessous montre l’électrolyte (en l’occurrence l’eau de mer), avec les bulles d’hydrogènes générées par la réaction.

owp6

Pour les plus chimistes d’entre vous, voici le principe global de la batterie.

owp8

Les avantages : des produits résiduels non toxiques, mais surtout une efficacité accrue (voir ci-dessous)

owp9

Avec comme conséquence un rayon d’action des UUV dotés de telles batteries augmenté d’un facteur 10. A titre d’illustration, l’image ci-dessous montre le rayon d’action d’un système classique (en rouge) et d’un système théorique muni d’une batterie OWP (en noir) dans le cas d’usage d’un drone réalisant des opérations dans le domaine pétrolier et gazier, dans le golfe du Mexique. Edifiant. Et ceci sans tenir compte du fait qu’une mission pourra elle-même durer plus longtemps, en particulier en travaillant en grande profondeur.

owp10

Les premiers contrats d’OWP ont été signés avec le ministère de la défense américain, et concernent essentiellement l’adaptation de cette technologie à des systèmes UUV emportés par des plongeurs-démineurs. Comme le dit la société elle-même, les meilleurs cas d’usage concernent des UUV menant des missions longues, ne nécessitant pas une trop grosse force de propulsion sous-marine. Ce qui en fait une technologie de choix pour des missions de reconnaissance ou de renseignement…

liqu3

A l’heure de l’ouverture du salon international de l’aéronautique et de l’espace au Bourget, voici une innovation qui nous vient (encore une fois, et j’en suis désolé) d’outre-Atlantique. L’idée a beau être simple, le concept est innovant : utiliser du métal liquide pour adapter une antenne unique à différentes fréquences.

Le problème est en particulier celui de l’emport d’une grande quantité d’antennes, chacune étant dévolue à une fonction et à une fréquence. Or sur un aéronef, le poids et l’encombrement sont des facteurs déterminants. Utiliser une antenne unique pour différentes fréquences et différents emplois est donc une solution séduisante. Pour peu qu’une antenne puisse le faire.

liqu5

Pour arriver à une telle prouesse, le AFRL (encore lui : le US Air Force Research Lab) a développé le concept d’une antenne remplie de métal liquide, reconfigurable, permettant d’émettre et de recevoir à différentes fréquences, et à différentes orientations.

liqu1

Le principe ? Incorporer des canaux avec différents motifs (ci-dessus) dans la structure même de l’avion, dans lesquels le métal liquide est injecté. Ce liquide est en fait constitué de nanoparticules de métal. Il s’agit d’alliages à base de Gallium, ayant le triple avantage d’être conducteurs, non toxiques (à la différence du mercure) et liquides à 30°C. Si on associe le Gallium avec d’autres métaux comme l’Indium, on peut encore abaisser le point de fusion ce qui permet d’avoir une antenne « malléable » à température ambiante. L’image ci-dessous montre la malléabilité d’un tel alliage.

liqu4

 L’équipe ayant démontré la viabilité du concept est composée des Drs. Jeff Baur et Michael Durstock « du « Materials and Manufacturing Directorate » et des Dr. Michelle Champion du « AFRL Sensors Directorate » et « Dave Zeppettella » du Aerospace Systems Directorate. Alors qu’une antenne traditionnelle n’opère que dans une fréquence donnée, en fonction de sa position et de sa taille, le métal liquide permet de moduler automatiquement – en théorie – l’antenne, et ses caractéristiques. Une telle antenne peut, en laboratoire, recevoir et émettre dans des fréquences comprises entre 70MHz et 7GHz. Pas mal…

La vidéo ci-dessous, qui date de deux ans, présente le concept.

Dans le domaine qui nous intéresse, le principe a été récemment démontré lors du DoD Lab Day du Pentagone. Et l’idée est de diriger en temps réel le métal à l’intérieur de la structure d’accueil afin d’adapter les fonctionnalités de l’antenne.

Pour aller plus loin, il faut que cette structure d’accueil soit elle-même flexible, de manière à pouvoir la déformer, la tordre ou l’étirer en fonction des caractéristiques souhaitées. Pour ce faire, l’AFRL travaille avec des structures comme NextFlex, spécialisées dans le domaine de l’électronique hybride flexible.

liqu2

La plus grande difficulté technique réside dans le contrôle de l’interaction entre le métal liquide et les structures électroniques d’accueil, et dans le fait de se débarrasser des résidus laissés quand le liquide quitte un canal pour être injecté dans un autre – ce qui peut provoquer des interférences.

Les chercheurs considèrent que le prototype de laboratoire a démontré la viabilité du processus, et que les futurs aéronefs pourraient bénéficier d’antennes en métal liquide d’ici 10 ans au maximum. Avec des retombées non prévues, comme par exemple des circuits électroniques à base de métal liquide, capables de s’auto-réparer. Les auteurs de science-fiction (voir Terminator 2) avaient donc du flair…

liqu6