Archives de la catégorie ‘Optronique’

apache2

Nous avons déjà parlé à plusieurs reprises de l’essor des armes à énergie dirigée par exemple dans cet article ou dans celui-ci. Le domaine est effectivement en plein développement, mais jusqu’alors, les tests ont été principalement effectués soit en laboratoire, soit sur des plateformes navales ou terrestres immobiles.

C’est donc avec un intérêt certain que les observateurs ont accueilli la démonstration qui vient de se dérouler sur le site de White Sands Missile Range, au Nouveau-Mexique. Elle consistait à utiliser un hélicoptère Apache afin de tester l’utilisation d’une arme laser connectée à une adaptation du système MSTS de Raytheon (l’essai ayant mobilisé des équipes de Raytheon, de l’US SOCOM – Special Operations Command – et de l’US Army).

apache1

Pour mémoire, le MSTS – pour Multi-Spectral Targeting System, ci-dessus –  est une boule optronique qui équipe les drones comme le Reaper. Il intègre à la fois des capteurs infrarouges, des capteurs CCDTV, un télémètre laser et un illuminateur laser, le tout étant stabilisé sur six axes. C’est un système utilisé pour faire du renseignement et de l’observation, mais également afin de réaliser de l’acquisition et de la désignation d’objectifs (traditionnellement, il est utilisé pour le guidage terminal des missiles Hellfire).

apache4

En l’occurrence, il s’agissait avant tout de valider le principe d’une arme à énergie dirigée équipant un hélicoptère, et utilisant un système de ciblage multi-spectral afin d’atteindre sa cible. Il s’agit bien d’une expérimentation : le laser équipant l’hélicoptère n’était pas un laser opérationnel, et d’ailleurs ni l’US Army ni Raytheon n’ont pris la peine d’en décrire les caractéristiques. Mais l’idée était de tester la faisabilité du concept d’une arme à énergie dirigée équipant un aéronef à voilure tournante. Dans le cas de l’hélicoptère Apache, compte tenu des points d’emport, le principe consiste à équiper l’hélicoptère d’un HEL (High Energy Laser), et de 12 missiles Hellfire (sur les points restants). L’image ci-après présente le concept.

apache3

Le test a permis de recueillir un grand nombre de données et, selon Raytheon, les résultats sont encourageants. Le film ci-après montre l’expérimentation, et l’on voit bien qu’il s’agit d’illuminer la cible et de maintenir la focalisation du laser.

L’expérimentation a permis de valider la faisabilité du concept, dans un grand nombre de configurations d’altitude, de vitesse et de régimes moteur. L’intérêt est de pouvoir trouver des stratégies afin de stabiliser le tir, et de tester les difficultés inhérentes à l’emploi d’un hélicoptère (vibrations, présence de poussière, souffle rabattant du rotor…). Reste encore à régler le problème de l’arme elle-même (et notamment de la puissance embarquée nécessaire à son opération, un paramètre qui conditionne l’efficacité de l’arme.

En revanche, les avantages sont clairs : une excellente précision, une trajectoire rectiligne (à la différence des trajectoires balistiques classiques), et une discrétion visuelle et sonore… ainsi qu’une réelle économie si l’on prend en compte le coût d’un missile Hellfire (110 000$/unité).

apache5

En revanche, un laser peut être réfléchi, dévié ou absorbé (même si réfléchir un laser à haute énergie requiert des matériaux composites difficiles à concevoir et à produire), et plusieurs armées (dont en particulier l’armée chinoise) sont en train de développer des contre-mesures adaptées aux armes laser – en particulier le JD3 – ci-dessus –  qui, outre ses caractéristiques d’arme à énergie dirigée, est conçue pour attaquer et neutraliser les désignateurs lasers ennemis.

apache6

D’ailleurs, l’armée chinoise est en train de réfléchir à des tests analogues, en montant ses lasers JD3 et ZM87 sur des hélicoptères de type Z-19E Black Whirlwind  (ci-dessus).  Un phénomène malheureusement prévisible : pas d’armement sans course aux armements…

2017-04-04-FR-pres-gen-ISL (003)

Pour une fois, et cela fait plaisir, je fais un focus sur de l’innovation qui n’est pas originaire d’outre-Atlantique. Au passage, je rappelle que ce fort tropisme américain n’est en rien une volonté ou un parti-pris de ce blog, mais bien une conséquence des budgets impressionnants de R&D de défense dont disposent nos amis américains. Snif.

Lors d’une visite organisée avec le GICAT (Groupement des Industries de Défense et de Sécurité terrestres et aéroterrestres) et son équivalent allemand, le BDSV (Bundesverband der Deutschen Sicherheits- und Verteidigungsindustrie) – voir photo ci-après – j’ai pu constater de visu la grande qualité des réalisations technologiques de l’ISL.

isl1

Rappelons que l’ISL (Institut Saint-Louis) est la plus ancienne coopération franco-allemande en matière de défense (elle hérite du LRSL créé en 1945, la création de l’ISL dans sa forme actuelle datant de 1959). L’ISL est une initiative conjointe de recherche franco-allemande, un schéma original et innovant, qui permet à cette institution de conduire des projets de recherche fondamentale, mais allant jusqu’à développer des innovations et de la recherche finalisée au profit des opérationnels.

Il fallait bien choisir un sujet parmi tous les projets de l’ISL. Donc, au menu pour cet article : les armes nouvelles, et en particulier les lasers et canons  électromagnétiques.

J’avais déjà mentionné à plusieurs reprises dans ce blog (voir par exemple cet article ) les armes à énergie dirigée, et en particulier les lasers. L’ISL travaille intensément dans le domaine, l’objectif des travaux réalisés par l’Institut étant de confirmer à la fois la faisabilité technique, et les bénéfices opérationnels escomptés pour ce nouveau type d’armes.

isl8

En l’occurrence, la question posée est d’identifier une source pour une future arme laser. Or l’exercice est loin d’être simple. En premier lieu, la puissance doit être au minimum de 100kW moyens, pendant quelques secondes. Il est en effet irréaliste de devoir maintenir trop longtemps un faisceau sur une cible, faute de puissance.

Mais la difficulté ne s’arrête pas là : les chercheurs ont en effet un autre objectif, dont on parle peu : la sécurité oculaire. Car une arme laser, c’est potentiellement quelque chose qui peut à la fois blesser son utilisateur, et occasionner des dommages collatéraux importants. Le laser ne s’arrête pas au bout de quelques mètres : il peut parcourir des centaines de kilomètres et mettre en danger la population. Sans compter que les conventions internationales sont strictes : toute arme potentiellement aveuglante doit respecter le protocole de la Convention de Vienne (1980).

L’ISL a donc entrepris des travaux de recherche en 2006 pour trouver une source laser opérationnellement acceptable pour cette future arme laser. Ces travaux ont mené au développement d’un premier démonstrateur baptisé MELIAS II, en 2010, respectant ces contraintes. Il s’agit d’un laser de 5kW, dont j’ai pu assister à un tir impressionnant. Impressionnant car la plaque de bois a été perforée immédiatement (10 ms), et impressionnant car nous n’avions pas besoin de porter de lunettes : ce laser émet en effet à des longueurs d’ondes non dangereuses pour l’œil humain (supérieures à 1,4 micromètres). C’est ce que l’on appelle le domaine spectral à sécurité oculaire (en l’occurrence, l’acronyme MELIAS signifie Medium Energy Laser In the eye-sAfe Spectral domain).

isl2

Depuis MELIAS II, l’ISL a développé MELIAS II+, actuellement en fin de montage. C’est un laser Er3+ YAG (Erbium-doped yttrium aluminium garnet laser) à capacité thermique, compact, simple d’emploi et à sécurité oculaire dont la puissance est aujourd’hui de l’ordre de 30kW, extensible à 100 kW. L’ISL a d’ailleurs développé une technologie de barillet permettant d’effectuer de nombreux tirs sans refroidissement.

isl3

Il s’agit encore d’installations de laboratoire, mais les premiers tirs sont prévus à la fin de l’année 2017.  L’objectif : utiliser ce type de laser pour neutraliser des drones, ou des menaces de type RAM (Roquettes/Artillerie/Mortiers).

Parlons maintenant d’un autre type d’armes : les « railguns » ou canons électriques ou électromagnétiques. L’objectif est de propulser un projectile à environ 3000 m/s de vitesse initiale sans utiliser de poudre propulsive, en établissant une différence de potentiel électrique entre deux rails parallèles conducteurs. Lorsque le courant électrique circule entre les deux rails, un champ magnétique se crée, permettant d’accélérer le projectile. Nous en avions déjà parlé, en particulier dans cet article.

Railgun_usnavy_2008

Une telle arme possède des avantages indéniables : pas de nécessité de stockage de matériaux dangereux (c’est l’impact du projectile, donc uniquement l’effet cinétique, qui provoque la destruction, même si des projectiles explosifs peuvent être employés, et la propulsion ne nécessite pas de poudre), un tir très peu onéreux, une cadence élevée, de l’ordre de 50 tirs par seconde, et une portée très importante – le railgun de l’ONR américain vise ainsi à atteindre une portée de 300 à 400 km.

Dans ce domaine, la France (et l’Allemagne) n’est pas à la traîne. L’ISL a ainsi réalisé un démonstrateur, le NGL60 (car doté d’un calibre 60x60mm) : un tube mesurant aujourd’hui 2m (extension prévue à 6m) et muni de nombreux condensateurs (voir la photo ci-dessous). Si les canons américains, bien plus onéreux, ont une énergie de bouche aux alentours de 30 MJ (petit rappel : une mégajoule d’énergie est équivalente à l’énergie d’une voiture d’une tonne, voyageant à 160km/h), le NGL60 est déjà à 10MJ soit l’énergie typique du canon d’un char lourd. La technologie développée par l’ISL permet un fort taux de conversion d’énergie électrique en énergie cinétique (> 35%).

isl4

Mais l’ISL a également développé un démonstrateur de canon électrique haute cadence. Baptisé RAFIRA (pour RApid Fire RAilgun), il permet de tirer des salves de cinq tirs consécutifs à une fréquence de 75Hz, sans nécessité de « gatling », c’est-à-dire sans devoir échanger le tube. L’intérêt d’une telle cadence est de pouvoir envisager un emploi antimissile (qui nécessite de dépasser le 50 Hz), chaque projectile subissant une accélération de plus de 100 000g ( !) et étant propulsé à plus de 2400 m/s.

isl5

Au-delà, avec RAFIRA, l’ISL a développé un concept de salve « intelligente », permettant de gérer individuellement l’accélération de chaque projectile, pour anticiper une trajectoire ou au contraire faire arriver simultanément tous les projectiles sur une cible.

Bon, j’aurais aussi pu parler des « générateurs XRAM inductifs compacts, comprenant la source primaire d’énergie à accumulateurs lithium-ion et des commutateurs répétitifs haute tension à diélectrique liquide et à formation d’impulsions, permettant ainsi des largeurs d’impulsion inférieures à la nanoseconde et un champ de claquage record de 14 MV/cm. ». Mais comme je n’ai pas (tout) compris, je préfère laisser cela à la sagacité du lecteur averti (pour le coup, le texte vient du site de l’ISL).

isl6

Pas besoin de cela pour convaincre des capacités de l’ISL. Même si c’est un peu loin – bon, très loin – lorsque l’on est comme moi parisien, il s’agit d’un lieu unique rassemblant dans un contexte de coopération multinationale des talents incontestables. Et des chercheurs passionnés.

lm0

Ne vous fiez pas à l’image ci-dessus, il ne sera pas visible à l’œil nu. Mais Lockheed Martin a bel et bien développé un laser de combat miniaturisé, de 58kW, et s’apprête à le livrer à l’US Army. La course au déploiement d’armes à énergie dirigée sur le théâtre d’opérations va donc connaître une certaine accélération.

Nous en avions déjà parlé dans ce blog, mais un petit rappel ne me semble pas inutile. Les armements à énergie dirigée, dont les lasers HE (Haute Energie) tactiques sont dérivés, proviennent du besoin (en particulier du Pentagone) de disposer d’armes antimissiles, abondamment financées par différents programmes dans les dernières décennies. En particulier, l’Initiative de Défense Stratégique (IDS ou Starwars) lancée par Reagan en 1983, avait pour objectif de mettre à l’abri les USA d’une attaque nucléaire ennemie, via l’élaboration d’un vaste bouclier anti-missiles, utilisant notamment des lasers à haute puissance. L’IDS a été abandonnée en 1993, et les développements des armes laser se sont dès lors concentrés, en particulier aux USA mais pas uniquement, sur des objectifs tactiques, avec des lasers de puissance moyenne. Car les lasers qui émergent aujourd’hui sont les lasers à phase solide ou à fibre, avec un rayon d’action de l’ordre de 10 km maximum : Ce sont des lasers à vocation tactique.

lm2

Ces développements arrivent aujourd’hui à maturité pour certains d’entre eux, avec des essais d’armements laser tactiques réussis qui ont eu lieu récemment. En particulier, nous avions mentionné dans ce blog la destruction de drones depuis l’USS Ponce en novembre 2014 (laser de 30 kW – Système opérationnel dans le Golfe Persique), mais on peut également citer des essais US réussis de destruction d’obus de mortiers, les essais Rheinmetall positifs d’interception de drones et de mortiers en novembre 2011 (Rheinmetall a d’ailleurs présenté un système lors du récent salon IDEX 2017), ou encore le système Boeing CWLS (low cost) anti-drones, ou le programme israélien de lasers anti-mortiers.

Rheinmetall air defence systems Oerlikon High Energy Laser Gun on display at the defence and security exhibition DSEI at ExCeL, Woolwich, London, England, UK.

Rappelons également que la létalité d’un laser dépend à la fois de la puissance générée et de la qualité de focalisation du faisceau. Le niveau examiné aujourd’hui est donc toujours principalement de la classe 10 à 100kW. L’idée est de pouvoir détruire des drones, des missiles, des navires autonomes ou en essaim (pirates ou attaque terroriste) et éventuellement d’assurer une défense contre les mortiers ou autres projectiles d’artillerie. Peu voire pas de projets ont été conçus pour attaquer des cibles terrestres, du fait de la difficulté de perforer un blindage avec un faisceau laser.

C’est là que l’annonce de Lockheed Martin prend tout son sens aujourd’hui. Car on parle bien d’un laser miniaturisé à fibre d’une puissance de 58 et bientôt 60kW. Le constructeur annonce avoir miniaturisé suffisamment l’engin pour qu’il puisse être embarqué à bord d’un véhicule blindé. Et c’est bien la première fois qu’une telle puissance est annoncée sur le théâtre d’opérations, à partir d’un engin mobile.

Pour assurer une focalisation optimale du faisceau, Lockheed Martin a développé une technologie permettant de combiner et de faire converger les faisceaux de plusieurs lasers à fibre d’une puissance de 10kW chacun. Le concept avait d’ailleurs été également développé dans le cadre du projet EXCALIBUR de la DARPA (ci-dessous).

lm5

L’industriel annonce d’ailleurs que sa technologie est si précise qu’elle reviendrait à « toucher un ballon de volley au sommet de l’Empire State Building, à partir du pont de San Francisco » (comparaison curieuse mais bon). Pour assurer une telle précision, Lockheed Martin utilise une combinaison de systèmes de lentilles optiques, et d’algorithmique, afin d’ajuster la puissance du faisceau en corrigeant automatiquement les distorsions lors du trajet vers la cible.

Ce n’est pas la première fois que Lockheed fait la preuve de ses capacités dans le domaine : voir ci-dessous l’essai en 2015 du laser ATHENA, un laser plus volumineux et non mobile, d’une puissance de 30kw qui avait montré sa capacité à perforer le capot d’un engin situé à 1,5 km de distance.

lm4

Le nouveau laser de Lockheed Martin est constitué de modules de fibres optiques « dopées » avec des terres rares légères et lourdes (erbium, ytterbium, neodyme). Plus la fibre est longue, plus le laser est efficace, et comme cette dernière est flexible, on peut enrouler ces fibres comme des cordages dans un facteur de forme compact. Autre avantage : par rapport à un laser classique en phase solide, ce type de laser nécessite 50% moins d’énergie.

lm3

Un laser de cette classe est donc en théorie capable de neutraliser des drones, de petites embarcations, des cibles terrestres à 2km, ou des petits aéronefs ou missiles. Avec un avantage de taille : le coût d’un tir laser n’a rien à voir avec celui d’un missile. Le Général David Perkins avait ainsi récemment lancé une discussion sur l’utilisation par « un partenaire proche des Etats-Unis » ( !) d’un missile Patriot à 3M$ pour contrer un drone Quadcopter à 300$ avec une conclusion incontestable (je cite) : « d’un point de vue économique, je ne suis pas sûr que le ratio soit bon ». Pas faux, en effet.

Pour l’heure, cette nouvelle arme a donc pour fonction essentielle de neutraliser les menaces de types drones ou roquettes, et ce pour moins d’un dollar par tir (sans compter le coût d’acquisition du système).  Le nouveau laser sera bientôt livré au US Army Space and Missile Defense Command/Army Forces Strategic Command, situé à Huntsville, Alabama. L’ère du combat laser a donc bel et bien commencé.

 

dove2

On les appelle les « colombes » (Doves en anglais) mais ce sont de drôles de volatiles. Ce sont les 88 satellites – oui, 88! – qui vont partir en orbite aujourd’hui, à bord d’une fusée de type PSLV (Polar Satellite Lauch Vehicle) décollant du centre indien Satish Dhawan Space Center.

Mettre 88 satellites dans une fusée, cela donne une idée de la taille de chaque objet : 4,7 kg seulement par satellite, chacun occupant un volume de 10x10x30 cm. Ce sont des satellites de type CubeSat, capables d’observer la Terre en multispectral avec une résolution de 3 à 5m. Chaque satellite réalise une orbite complète en 90 min, et outre des caméras d’imagerie, dispose d’une caméra stellaire pour un positionnement fin de l’image. Les concepteurs sont même allés jusqu’à décorer chaque satellite par un « artist in residence » qui a réalisé des sérigraphies laser ( !).

dov6

Cette approche a été développée par la société privée Planet, qui n’en est pas à son coup d’essai, puisque la constellation est déjà partiellement en orbite : plus de 20 satellites Dove ont déjà été déployés, à une altitude de 400km. Regardez cette vidéo impressionnante du déploiement de 2 satellites Dove à partir de l’ISS (station spatiale internationale).

La société Planet dispose en tout de 55 micro-satellites déjà opérationnels. Mais aujourd’hui, on parle bien du déploiement de la plus grande flotte de satellites jamais effectué.

L’idée derrière la constellation des Doves est d’utiliser une ligne de satellites connectés comme un scanner pour photographier la surface de la Terre. Ils interagissent entre eux, mais également avec d’autres satellites – nous y reviendrons.

dove3

Evidemment, outre le fait de concevoir ses propres satellites, Planet –  qui a récemment levé 183 millions de $ de capital – développe aussi ses propres logiciels : un logiciel de gestion de la flotte satellitaire automatique (ce n’est pas si évident de gérer plus de 100 satellites en orbite dans la même constellation) – voir ci-dessous:

dove5

La société a également développé un « pipeline » de traitement, une plate-forme complète permettant  une automatisation du processus d’imagerie.

dove6

Mais Planet ne s’arrête pas là puisqu’elle vient d’acquérir la société TerraBella (en la rachetant à Google !), une société qui opère sept satellites très complémentaires des Doves, puisque chacun dispose d’une résolution 4 à 6 fois supérieure. De quoi former un système de surveillance impressionnant.

Car tout cela, finalement, a pour objectif développer la plate-forme de surveillance automatique de la Terre la plus performante et la plus simple d’emploi jamais conçue. Son principe de fonctionnement est finalement simple. Les Doves réalisent un premier scanner, et le réactualisent à chaque orbite. Si un changement est détecté, alors l’un des satellites Terra Bella est activé et braqué sur la zone d’intérêt. Cela peut être une catastrophe naturelle, une modification des zones agricoles, mais aussi la présence de véhicules blindés ou de navires de guerre dans une zone, par exemple. Ou l’observation de l’évolution de la construction d’une piste, comme dans cette photo de l’île  Fiery Cross dans l’archipel disputé des Spratleys.

dove1

Même si les Doves ne sont pas déployés depuis longtemps, ils peuvent analyser des changements sur des périodes plus longues, car Planet a racheté en 2015 la société BlackBridge qui détient les données d’observation issues de l’imagerie satellitaire Landsat 8 et Sentinel 2. Ces données sont combinées au sein de la même plateforme. En tout, voici les données disponibles via Planet :

  • PlanetScope: Bandes RGB et NIR (proche infrarouge) (3.7m de résolution), Constellation Dove
  • RapidEye: Bandes RGB, NIR et red edge – bordure rouge (6.5m de résolution), Constellation RapidEye
  • Sentinel-2: 13 bandes spectrales– RGB et NIR bands (10m de résolution); six bandes red edge et infrarouges à ondes courtes (20m de résolution); trois bandes de correction atmosphérique (60m de résolution)
  • Landsat 8: 11 bandes spectrales – Bande panchromatique (15m de résolution); 8 RGB, NIR, IR à ondes courtes, and correction atmosphérique (20m de résolution); 2 bandes IR thermique (100m de résolution)

Planet devient donc un opérateur très complet, capable de détecter toute modification dans une zone quelconque (ou presque) sur la Terre. Et avec un contrat adéquat, en théorie, toute organisation peut utiliser sa plate-forme pour réaliser des observations performantes.

On voit donc apparaître un opérateur privé qui devient capable de détenir des technologies jusqu’alors réservées aux états. On peut presque dire que l’imagerie satellitaire devient une technologie dite nivelante, accessible en théorie au plus grand nombre.

Car si le lancement d’aujourd’hui est un succès (le dernier lancement de 23 Doves fut un échec majeur avec l’explosion du lanceur, comme quoi il ne s’agit pas d’un sport de masse), de tels investissements montrent que Planet cible bien une offre large, destinée à un grand nombre de clients. Il conviendra donc de suivre la mise en place des garde-fous nécessaires au maintien d’un certain contrôle, dans un domaine qui demeure sensible.

 

lens5

Bon, ce n’est pas pour tout de suite, mais puisqu’on peut faire de temps en temps de la prospective à plus de 30 ans, je m’attarde un instant sur cette invention digne des meilleurs films de science-fiction. Nous la devons à la société BAE, qui travaille sur un projet baptisé LDAL pour « Laser Developed Atmospheric Lens », ce qu’on pourrait traduire par lentille atmosphérique créée par focalisation laser.

Cette invention vise à ioniser l’atmosphère au moyen d’une impulsion laser afin de créer un « bouclier » permettant de protéger le sol contre les effets d’une arme laser à énergie dirigée, d’utiliser cette « lentille » pour de l’espionnage ou de la reconnaissance, ou encore de constituer un mirage optique pour leurrer l’adversaire. Délire d’un ingénieur fana de science-fiction ? Non, c’est sérieux.

lens1

Le concept repose sur un effet physique dit Effet Kerr. Pour faire simple, voire simpliste pour les puristes, le laser à impulsion braqué sur l’atmosphère ionise l’air; à haute puissance, l’indice de réfraction de l’air dépend de l’intensité laser incidente (il y a même une formule, mais je ne veux pas dégoûter les lecteurs). Le profil d’intensité dans le faisceau laser n’étant pas uniforme, l’effet Kerr génère un profil d’indice de réfraction qui se comporte comme une lentille convergente ou « lentille de Kerr » dont la distance focale dépend de l’intensité.

On va faire simple : une fois ionisée, la portion de l’atmosphère concernée est transformée temporairement en une structure proche d’une lentille, permettant soit d’amplifier, soit de dévier le trajet des ondes électromagnétiques (ondes lumineuses, mais aussi ondes radio). Le phénomène est évidemment réversible. C’est un peu ce que l’on voit dans le cas d’un mirage, où l’air chaud qui monte réfracte la lumière et permet de dévier le trajet des rayons lumineux.

lens2

L’idée de BAE, c’est d’utiliser ce phénomène afin de protéger les troupes au sol, les véhicules, navires ou même aéronefs d’une attaque par l’emploi d’une arme à énergie dirigée (laser à haute énergie par exemple). Ou de déclencher un laser à impulsion en haute altitude, et provoquer la création d’une lentille permettant d’observer les mouvements ennemis en amplifiant la lumière venant de la zone située en-dessous de la lentille. La vidéo ci-après présente le projet.

Et les concepteurs ne sont pas des doux rêveurs puisqu’ils travaillent avec le Science and Technology Facilities Council britannique, le laboratoire Rutherford Appleton et la société LumOptica.

Evidemment, ce n’est pas pour demain : un tel système, dans sa pleine capacité opérationnelle, est envisageable dans un délai d’une cinquantaine d’années. Mais nul doute que ce développement pourra être accéléré si les armes à énergie dirigée se démocratisent au point de devenir une menace réelle et prégnante. Ou si quelqu’un s’avise de construire l’Etoile Noire (ou blonde, sic), on ne sait jamais…

nvg4

« Regarder au travers de tubes de papier-toilette en carton » : c’est comme cela que certains désignent l’inconfort d’utiliser des lunettes de vision nocturne (dont l’acronyme le plus répandu est NVG pour Night Vision Goggles). Malgré les récents progrès apportés notamment par les lunettes quadri-tubes panoramiques rendues célèbres par le raid contre Ben Laden, les NVG classiques sont souvent trop imposantes, trop lourdes et insuffisamment performantes.

nvg3

Cet encombrement est dû à la technologie elle-même. En effet, pour développer un dispositif de vision nocturne, il est nécessaire d’amplifier le peu de lumière disponible, et de le rendre visible à l’utilisateur. Pour ce faire, une lentille récupère tous les photons disponibles y compris dans le proche infrarouge et les convertit en électrons à l’aide d’une photocathode. Ces électrons sont ensuite envoyés dans un tube sous vide au travers de plaques microperforées et subissent une amplification ; en gros, un électron génère l’émission d’autres électrons par réaction en chaine (cascaded secondary emission, en anglais). On atteint des facteurs d’amplification importants, de l’ordre de 50 000 à 90 000x. A l’extrémité du tube, les vagues d’électrons amplifiés frappent un écran au phosphore qui réagit en émettant la lumière verte caractéristique de la vision nocturne, et permet donc de voir la lumière réfléchie dans l’obscurité.

nvg1

Il s’agit donc d’un dispositif assez complexe et surtout nécessitant un facteur de forme important, en termes de poids et d’encombrement, et ce d’autant plus qu’il nécessite un générateur électrique puissant.

Des chercheurs de l’Université ANU (Australian National University) se sont attaqués à ce problème et viennent de publier des résultats intéressants permettant d’envisager des appareils plus compacts et plus faciles d’emploi, en utilisant les nanotechnologies.

nvg8

L’idée est d’utiliser des nano-antennes, à base d’arséniure d’aluminium et de gallium, 500 fois plus fines qu’un cheveu et capables de réaliser l’amplification des photons sans tube à vide. Le processus repose sur le phénomène dit de génération d’harmoniques de deuxième ordre (SHG pour Second Harmonic Generation). Là encore, je ne fais pas un cours de physique – j’en serais d’ailleurs incapable – mais j’essaie de simplifier au maximum. Ces nanocristaux d’arséniure de gallium ont en effet des propriétés non linéaires : ils doublent la fréquence de la lumière qui les traverse. Pour faire simple, ces cristaux sont capables de convertir la lumière infrarouge en lumière visible. En gros, ils changent la forme, la couleur et la forme de la lumière.

nvg6

L’intérêt est de nécessiter très peu d’énergie, et surtout de n’avoir besoin que d’une couche de nano-cristaux qui aurait ainsi la propriété presque magique de convertir et d’amplifier la lumière. Une telle couche pourrait être apposée sous forme de film, permettant ainsi de concevoir des lunettes à vision nocturne guère plus épaisses qu’une paire de lunettes de soleil. On peut également imaginer un pare-brise de véhicule conférant au pilote la capacité à conduire dans l’obscurité.

Aujourd’hui, les chercheurs de l’ANU ont montré qu’en utilisant ces nanocristaux, ils étaient capables de convertir un laser infrarouge en lumière visible. Pour aller plus loin, il faudra démontrer la capacité à traiter différentes fréquences – ce qui pourra être réalisé en combinant différentes tailles de nanocristaux.

nvg7

Les inventeurs espèrent développer (avec l’aide de la DARPA) un prototype d’ici 3 ans – en parallèle, d’autres voies existent comme le développement de lentilles de contacts à vision thermique, à base de graphène (voir cet article). Il est donc plus que probable que le fantassin de 2025 pourra disposer de systèmes impressionnants, et performants (en termes de puissance mais aussi de légèreté) conçus grâce à la démocratisation des nanotechnologies.

20161123_115905_resized

Vous êtes quelques-uns à reprocher (gentiment) à ce blog une certaine orientation vers la recherche américaine. Ce n’est pas une volonté, mais une conséquence (1) des conséquents budgets américains en termes de R&D de défense et (2) d’une maîtrise certaine de la communication par nos voisins outre-Atlantique (les amenant d’ailleurs parfois à communiquer avec un certain talent des programmes politiques n’ayant pas grand-chose à voir avec la réalité, je dis ça comme ça….).

Une fois par an, la DGA organise son Forum Innovation. C’était hier et aujourd’hui, sur le site de Palaiseau, et pour le coup, cela amène une réelle volonté active de communication de la part à la fois de institutionnels, mais aussi des laboratoires et des petites entreprises. J’ai donc fait mon marché de l’innovation, en voici un premier résultat.

20161123_115841_resized

Le projet s’appelle AXONE. Il s’agit d’un système neuronal artificiel capable de réaliser des tâches d’analyse de scène en temps réel. Il s’agit du résultat d’un projet RAPID (Régime d’Appui pour l’Innovation Duale – voir la page de référence ici ) associant l’Institut Saint-Louis, la société Spikenet Technologies et la société GlobalSensing Technologies.

L’idée est d’utiliser un certain type de réseaux de neurones artificiels, les neurones à Spike, pour procéder à l’analyse en temps réel d’une scène visuelle, et de les embarquer sur des composants dédiés (SoC ou Systems on Chips). Je vais essayer d’expliquer simplement le concept – et ce, d’autant plus que j’avais travaillé il y a plus de vingt ans avec le Pr Simon Thorpe, créateur de la technologie SpikeNet (il me semble que j’ai même commis un article sur le sujet…).

20161123_115838_resized

Pour faire simple : en neurobiologie, on se pose depuis longtemps la question de la nature du codage de l’information par les neurones. La théorie générale est fondée sur un codage fréquentiel de l’information (fréquence des décharges électriques). Mais il existe une autre théorie reposant sur un codage temporel de l’information : le codage serait fait par des impulsions (spikes) ou plus précisément par les instants d’émission des impulsions. On prend donc en compte l’aspect temporel. Un réseau artificiel de neurones à spike est conçu pour simuler des réseaux qui contiennent un nombre très grand de neurones à décharge asynchrone et qui apprennent par codage des séquences de décharge. On appelle cela le codage par rangs (évidemment, je simplifie). Cette technologie est très utilisée pour la reconnaissance de formes, et en particulier le traitement d’images.

L’intérêt de cette technologie est que le temps d’apprentissage est très rapide, et très tolérant (aux conditions d’illumination, au bruit, aux contrastes…). Dans le projet AXONE, les participants ont ainsi pu implanter un réseau de neurones à spike sur une carte dédiée (ce que l’on appelle un processeur FPGA). En gros, il s’agit d’un processeur reconfigurable, comportant 1024 neurones artificiels, et conçue par la société GlobalSensing Technologies. Avec SpikeNet et l’ISL, et en 24 mois, les acteurs du projet AXONE ont réalisé une caméra reconfigurable générant des Spikes en lieu et place des images. Le travail a ainsi consisté (outre évidemment l’algorithmique sous-jacente) à intégrer ce réseau de neurones artificiel avec un capteur, au sein d’une caméra autonome, et de développer la librairie logicielle pour la mise en œuvre de ces composants.

20161123_115903_resized

Et le résultat est impressionnant. Lors de la présentation au Forum DGA, on a pu ainsi visualiser la reconnaissance de visages en temps réel (chaque visage est reconnu, en temps réel, avec sa signature unique). Les applications sont nombreuses : sécurité et surveillance de sites sensibles avec levée de doute par la caméra elle-même, capteurs abandonnés capables de réaliser une analyse in situ (voir mon article sur l’IA embarquée), et évidemment, augmentation de la capacité de reconnaissance de forme en robotique et en particulier pour les drones.

20161123_115855_resized

J’ajoute que la DGA a pris une initiative originale : celle de faire parrainer certaines innovations par des personnalités de l’institution. En l’occurrence, AXONE est parrainée par l’excellent Lionel MORIN, directeur du CATOD (Centre d’Analyse Technico-Opérationnelle de Défense) – ci-dessous.

20161123_123107_hdr_resized

Une technologie à suivre, et une excellente illustration des capacités d’innovation de l’écosystème français de la Défense – je publierai d’ailleurs bientôt d’autres articles suite à ma visite sur le forum Innovation.