Archives de la catégorie ‘Optronique’

nvg4

« Regarder au travers de tubes de papier-toilette en carton » : c’est comme cela que certains désignent l’inconfort d’utiliser des lunettes de vision nocturne (dont l’acronyme le plus répandu est NVG pour Night Vision Goggles). Malgré les récents progrès apportés notamment par les lunettes quadri-tubes panoramiques rendues célèbres par le raid contre Ben Laden, les NVG classiques sont souvent trop imposantes, trop lourdes et insuffisamment performantes.

nvg3

Cet encombrement est dû à la technologie elle-même. En effet, pour développer un dispositif de vision nocturne, il est nécessaire d’amplifier le peu de lumière disponible, et de le rendre visible à l’utilisateur. Pour ce faire, une lentille récupère tous les photons disponibles y compris dans le proche infrarouge et les convertit en électrons à l’aide d’une photocathode. Ces électrons sont ensuite envoyés dans un tube sous vide au travers de plaques microperforées et subissent une amplification ; en gros, un électron génère l’émission d’autres électrons par réaction en chaine (cascaded secondary emission, en anglais). On atteint des facteurs d’amplification importants, de l’ordre de 50 000 à 90 000x. A l’extrémité du tube, les vagues d’électrons amplifiés frappent un écran au phosphore qui réagit en émettant la lumière verte caractéristique de la vision nocturne, et permet donc de voir la lumière réfléchie dans l’obscurité.

nvg1

Il s’agit donc d’un dispositif assez complexe et surtout nécessitant un facteur de forme important, en termes de poids et d’encombrement, et ce d’autant plus qu’il nécessite un générateur électrique puissant.

Des chercheurs de l’Université ANU (Australian National University) se sont attaqués à ce problème et viennent de publier des résultats intéressants permettant d’envisager des appareils plus compacts et plus faciles d’emploi, en utilisant les nanotechnologies.

nvg8

L’idée est d’utiliser des nano-antennes, à base d’arséniure d’aluminium et de gallium, 500 fois plus fines qu’un cheveu et capables de réaliser l’amplification des photons sans tube à vide. Le processus repose sur le phénomène dit de génération d’harmoniques de deuxième ordre (SHG pour Second Harmonic Generation). Là encore, je ne fais pas un cours de physique – j’en serais d’ailleurs incapable – mais j’essaie de simplifier au maximum. Ces nanocristaux d’arséniure de gallium ont en effet des propriétés non linéaires : ils doublent la fréquence de la lumière qui les traverse. Pour faire simple, ces cristaux sont capables de convertir la lumière infrarouge en lumière visible. En gros, ils changent la forme, la couleur et la forme de la lumière.

nvg6

L’intérêt est de nécessiter très peu d’énergie, et surtout de n’avoir besoin que d’une couche de nano-cristaux qui aurait ainsi la propriété presque magique de convertir et d’amplifier la lumière. Une telle couche pourrait être apposée sous forme de film, permettant ainsi de concevoir des lunettes à vision nocturne guère plus épaisses qu’une paire de lunettes de soleil. On peut également imaginer un pare-brise de véhicule conférant au pilote la capacité à conduire dans l’obscurité.

Aujourd’hui, les chercheurs de l’ANU ont montré qu’en utilisant ces nanocristaux, ils étaient capables de convertir un laser infrarouge en lumière visible. Pour aller plus loin, il faudra démontrer la capacité à traiter différentes fréquences – ce qui pourra être réalisé en combinant différentes tailles de nanocristaux.

nvg7

Les inventeurs espèrent développer (avec l’aide de la DARPA) un prototype d’ici 3 ans – en parallèle, d’autres voies existent comme le développement de lentilles de contacts à vision thermique, à base de graphène (voir cet article). Il est donc plus que probable que le fantassin de 2025 pourra disposer de systèmes impressionnants, et performants (en termes de puissance mais aussi de légèreté) conçus grâce à la démocratisation des nanotechnologies.

20161123_115905_resized

Vous êtes quelques-uns à reprocher (gentiment) à ce blog une certaine orientation vers la recherche américaine. Ce n’est pas une volonté, mais une conséquence (1) des conséquents budgets américains en termes de R&D de défense et (2) d’une maîtrise certaine de la communication par nos voisins outre-Atlantique (les amenant d’ailleurs parfois à communiquer avec un certain talent des programmes politiques n’ayant pas grand-chose à voir avec la réalité, je dis ça comme ça….).

Une fois par an, la DGA organise son Forum Innovation. C’était hier et aujourd’hui, sur le site de Palaiseau, et pour le coup, cela amène une réelle volonté active de communication de la part à la fois de institutionnels, mais aussi des laboratoires et des petites entreprises. J’ai donc fait mon marché de l’innovation, en voici un premier résultat.

20161123_115841_resized

Le projet s’appelle AXONE. Il s’agit d’un système neuronal artificiel capable de réaliser des tâches d’analyse de scène en temps réel. Il s’agit du résultat d’un projet RAPID (Régime d’Appui pour l’Innovation Duale – voir la page de référence ici ) associant l’Institut Saint-Louis, la société Spikenet Technologies et la société GlobalSensing Technologies.

L’idée est d’utiliser un certain type de réseaux de neurones artificiels, les neurones à Spike, pour procéder à l’analyse en temps réel d’une scène visuelle, et de les embarquer sur des composants dédiés (SoC ou Systems on Chips). Je vais essayer d’expliquer simplement le concept – et ce, d’autant plus que j’avais travaillé il y a plus de vingt ans avec le Pr Simon Thorpe, créateur de la technologie SpikeNet (il me semble que j’ai même commis un article sur le sujet…).

20161123_115838_resized

Pour faire simple : en neurobiologie, on se pose depuis longtemps la question de la nature du codage de l’information par les neurones. La théorie générale est fondée sur un codage fréquentiel de l’information (fréquence des décharges électriques). Mais il existe une autre théorie reposant sur un codage temporel de l’information : le codage serait fait par des impulsions (spikes) ou plus précisément par les instants d’émission des impulsions. On prend donc en compte l’aspect temporel. Un réseau artificiel de neurones à spike est conçu pour simuler des réseaux qui contiennent un nombre très grand de neurones à décharge asynchrone et qui apprennent par codage des séquences de décharge. On appelle cela le codage par rangs (évidemment, je simplifie). Cette technologie est très utilisée pour la reconnaissance de formes, et en particulier le traitement d’images.

L’intérêt de cette technologie est que le temps d’apprentissage est très rapide, et très tolérant (aux conditions d’illumination, au bruit, aux contrastes…). Dans le projet AXONE, les participants ont ainsi pu implanter un réseau de neurones à spike sur une carte dédiée (ce que l’on appelle un processeur FPGA). En gros, il s’agit d’un processeur reconfigurable, comportant 1024 neurones artificiels, et conçue par la société GlobalSensing Technologies. Avec SpikeNet et l’ISL, et en 24 mois, les acteurs du projet AXONE ont réalisé une caméra reconfigurable générant des Spikes en lieu et place des images. Le travail a ainsi consisté (outre évidemment l’algorithmique sous-jacente) à intégrer ce réseau de neurones artificiel avec un capteur, au sein d’une caméra autonome, et de développer la librairie logicielle pour la mise en œuvre de ces composants.

20161123_115903_resized

Et le résultat est impressionnant. Lors de la présentation au Forum DGA, on a pu ainsi visualiser la reconnaissance de visages en temps réel (chaque visage est reconnu, en temps réel, avec sa signature unique). Les applications sont nombreuses : sécurité et surveillance de sites sensibles avec levée de doute par la caméra elle-même, capteurs abandonnés capables de réaliser une analyse in situ (voir mon article sur l’IA embarquée), et évidemment, augmentation de la capacité de reconnaissance de forme en robotique et en particulier pour les drones.

20161123_115855_resized

J’ajoute que la DGA a pris une initiative originale : celle de faire parrainer certaines innovations par des personnalités de l’institution. En l’occurrence, AXONE est parrainée par l’excellent Lionel MORIN, directeur du CATOD (Centre d’Analyse Technico-Opérationnelle de Défense) – ci-dessous.

20161123_123107_hdr_resized

Une technologie à suivre, et une excellente illustration des capacités d’innovation de l’écosystème français de la Défense – je publierai d’ailleurs bientôt d’autres articles suite à ma visite sur le forum Innovation.

ukraine1

Si vous vous en souvenez, j’avais déjà parlé de ces projets de blindage « transparent » : l’idée de munir un chef d’engin de lunettes de réalité virtuelle afin de pouvoir disposer d’une vue de ce qui l’entoure, simplement en regardant autour de lui (voir cet article).

L’idée du blindage transparent n’est donc pas nouvelle. Il y a le véritable blindage transparent réalisé à partir de matériaux comme la spinelle (voir également cet article), mais surtout l’idée d’utiliser des dispositifs de réalité virtuelle qui agrègent l’information visuelle ou thermique fournie par les capteurs externes, et permettent au regard du chef de « percer le blindage ». La société Finmeccanica avait d’ailleurs démontré un tel prototype pour un pilote d’hélicoptère lors du salon du Bourget 2013. Et l’armée norvégienne avait réalisé une expérimentation en utilisant le casque de réalité virtuelle Oculus Rift dans le même but (image ci-dessous).

article-2621476-1D9D205400000578-542_634x356

L’idée refait aujourd’hui surface, à la fois stimulée par l’émergence de nouvelles technologies de casques à réalité virtuelle et augmentée, et sous l’impulsion d’opérationnels…ukrainiens. Car une start-up de Kiev, Limpid Armor, vient de remporter une bourse de Microsoft pour développer une technologie de casque à réalité augmentée fondée sur la technologie Hololens.

ukraine3

Un petit mot sur cette technologie dont on parle depuis au moins deux ans. Il s’agit d’une technologie développée par Microsoft de réalité augmentée : des lunettes semi-transparentes, capables d’injecter dans la vision de l’utilisateur des images « holographiques » qui viennent se superposer à la vision de l’environnement de ce dernier. Les lunettes pèsent environ 400g et offrent un champ de vision de 120° par 120°. Mais surtout, avec une qualité de projection d’hologramme 3D assez bluffante. En fait, Hololens est un ordinateur en soi, et permet de percevoir des projections holographiques extrêmement brillantes, même dans un environnement lumineux.

La vidéo institutionnelle de promotion d’Hololens est présentée ci-dessous.

Bon, à la différence de ce que l’on voit dans la démo, le champ visuel est très – trop – réduit. En fait, il conviendrait d’avoir du 180° par 180° pour obtenir une qualité de projection réellement satisfaisante. Cela n’est néanmoins pas un obstacle pour le projet de Limpid Armor. Cette société a donc développé un concept alliant la technologie Hololens avec un réseau de caméras situées à l’extérieur du véhicule. Le système est baptisé CRS pour Circular Review System. Il fusionne les informations des caméras en une image composite, et serait même capable de réaliser du « blue force tracking » en réalité mixte : désigner au chef d’engin les forces alliées en superposant un identifiant sur le terrain réel. L’idée serait également d’aller vers la désignation au chef des cibles ou unités ennemies, directement dans son champ de vision.

ukraine2

L’idée est assez séduisante, même si le concept précédent, utilisant un casque de réalité virtuelle et non mixte (l’Oculus Rift) a très vite montré des limites opérationnelles : fatigue des yeux des opérateurs, surcharge informationnelle, mais surtout angoisse générée par l’impression de « ne pas être protégé », le blindage devenant transparent.

De telles innovations, même si elles paraissent séduisantes pour un technophile, doivent donc toujours être examinées par le prisme opérationnel. En particulier, ce cas d’école montre qu’il est nécessaire et même indispensable de prendre en compte les aspects liés aux facteurs humains, physiologiques comme psychologiques. La technologie ne fait pas tout. En tout cas, tant que les chars seront commandés par des hommes.

mov1

Ce n’est pas la première fois que nous parlons ici des caméras thermiques intelligentes. Mais ici, il s’agit d’une réelle convergence entre deux technologies : la vision thermique, et l’interprétation automatique d’images par vision artificielle. Cette convergence est matérialisée par l’alliance entre deux références du domaine : la société FLIR bien connue pour ses technologies de vision thermique par infrarouge, et la société MOVIDIUS, spécialiste de la vision artificielle embarquée.

Movidius est une société californienne qui développe des solutions dites de VPU pour Vision Processor Unit ; son architecture baptisée Myriad 2 est en fait un processeur spécialisé dans la vision artificielle embarquée. Il se compose d’un processeur DSP de traitement du signal permettant d’exécuter 150 milliards d’opérations par seconde, en ne consommant que 1,2 watts.

mov2

Ces deux sociétés viennent d’annoncer le fruit de leur collaboration : la caméra BOSON, une caméra thermique embarquant le Myriad 2 (possédant 12 cœurs de calcul programmables) et permettant d’implémenter in situ des algorithmes de traitement avancé de l’image, filtrage du bruit, et analyse d’objets. La caméra BOSON intègre les algorithmes de base, et l’utilisateur dispose de puissance de calcul et de mémoire disponibles pour implémenter ses propres traitements.

Le résultat ? Une caméra thermique miniaturisée, de faible consommation, et embarquant une intelligence artificielle permettant le traitement automatisé et en temps réel des images. Il devient ainsi possible de réaliser de la détection et du suivi d’images, de la détection de geste ou de mouvement, ou d’extraire des caractéristiques de haut niveau permettant d’implémenter une identification automatique de cible d’intérêt et un traitement de l’image correspondante.

Cela permet de réaliser l’essentiel des opérations au sein du capteur lui-même : toutes les opérations sont effectuées localement, sans devoir surcharger la bande passante du réseau, ni devoir transmettre des informations en vue d’en faire l’analyse sur un serveur distant. Une économie de temps, un gain de sécurité et d’efficacité : on peut ainsi imaginer qu’un drone aérien soit capable de réaliser l’interprétation automatique et immédiate des images qu’il capte, sans devoir faire appel à une liaison vers un segment sol.

Une caméra d’ailleurs facilement embarquée par un drone : la caméra BOSON est miniaturisée (21x21x11mm sans l’objectif), ne pèse que 7.5g pour l’unité de traitement, est possède une vision dans le spectre 7.5 µm – 13.5 µm. En revanche, elle est classée ITAR et nécessite donc à ce titre une autorisation d’export par les autorités américaines.

mov3

Il s’agit là d’une véritable révolution amenée, je le pense, à se généraliser : l’intégration de capacités de haut niveau (ici la vision artificielle) dans le senseur lui-même, permettant ainsi de conserver localement des capacités de traitement élaborées sans devoir transmettre l’information à un serveur distant.

Les applications vont de l’analyse d’images de surveillance, à la navigation, ou  la vision artificielle pour drones et robots,… Les grands du domaines ne s’y trompent pas : la société MOVIDIUS a été récemment sélectionnée par …Google, afin d’intégrer des capacités d’apprentissage dans les objets connectés. L’avènement des capteurs intelligents…

hornet2

Si le salon Eurosatory fut, du point de vue professionnel, un succès incontestable, ce fut également une grande source de frustration, n’ayant pu passer du temps pour explorer le salon à la recherche d’innovation technologique de défense. Un comble.

La seule innovation que j’ai pu voir était présentée sur le stand du CV90 et paraissait quelque peu fragile aux côtés de l’énorme véhicule blindé. Il s’agit pourtant d’une réelle innovation, dont le directeur de la STAT (Section Technique de l’Armée de Terre), le général Charles Beaudouin, m’avait parlé il y a quelques semaines.

hornet4

La société norvégienne ProxDynamics a en effet poussé jusqu’au bout le principe du nano-drone de reconnaissance, en allant au-delà du concept théorique. Le Black Hornet PD 100 est un drone de reconnaissance, à voilure tournante. Mais ce sont ses caractéristiques qui sont impressionnantes : un rotor de 120mm de diamètre, un poids plume de 18g, une durée de vol de 25mn avec une vitesse maximale de 5 m/s et à 10m d’altitude, et un système de stabilisation automatique en vol. Mais c’est surtout un véritable système opérationnel : liaison de données numérique avec une portée de 1.5km, système de préparation de mission, et navigation GPS automatique (routes préprogrammées), ou guidage visuel par l’opérateur.

Le Black Hornet est équipé de caméras orientables (pan/tilt) permettant de filmer simultanément l’avant du drone, le sol, ainsi qu’une caméra orientable à 45 degrés. Il peut être également équipé sur demande d’un capteur thermique, d’une caméra infrarouge, ou d’un capteur chimique. Le système complet comprend 2 drones, une manette de pilotage appelée « pad » et un écran de contrôle (tablette durcie) de 800×480 pixels, le tout dans un facteur de forme utilisable par un fantassin et ne pesant « que » 1,3 kg.

hornet1

Et le Black Hornet est parfaitement silencieux grâce à sa motorisation électrique : une caractéristique essentielle pour ses emplois opérationnels : reconnaissance, contrôle de foule, inspection, surveillance de périmètre ou exploration d’environnements confinés.

hornet3

Il ne s’agit pas d’un jouet puisque l’on parle d’un prix d’acquisition de l’ordre de 40 000 dollars pièce (contre 195 000$ pour les exemplaires initiaux). Mais le système semble d’une redoutable efficacité, et le commandement des opérations spéciales (COS) aurait annoncé son intention d’en acquérir plusieurs dizaines. Car le Black Hornet est « combat proven » : il a été déployé avec succès par l’armée britannique en Afghanistan. Cette dernière a indiqué que le nano-drone avait déjà permis de débusquer « des tireurs isolés et des explosifs improvisés sur le terrain ». En revanche, le mode de pilotage par GPS semble difficilement utilisable en intérieur, et l’on peut se poser la question de l’efficacité du pilotage à vue par l’opérateur, par liaison de données, au sein d’un bâtiment.

hornet5

Un bel engin néanmoins, qui allie pertinence opérationnelle, et respect des contraintes liées à l’allègement du combattant. A suivre, donc – surtout si la STAT s’en mêle. Les lecteurs de ce blog seront sans doute preneurs d’un retour d’expérience. A bon entendeur…

davd1

Il s’appelle DAVD mais certains l’appellent déjà DAVID, pour Divers Augmented VIsion Display (système d’affichage en vision augmentée pour plongeurs) et c’est le tout premier dispositif permettant d’afficher des indications en vision augmentée pour des nageurs de combat, pendant leur mission.

On rappelle pour mémoire que la vision augmentée permet de superposer des indications synthétiques dans le champ visuel d’un opérateur ; l’exemple le plus connu est le HUD (affichage tête haute ou head-up display) des pilotes (de chasse comme de transport) permettant de visualiser les informations de pilotage, tactiques ou relatives à l’état de l’avion directement dans leur champ visuel. Avec la miniaturisation des moyens de calcul, et la maturité et la résolution des systèmes de génération d’image, cette technologie tend à se généraliser.

La réalité augmentée, quant à elle, va un cran plus loin, puisqu’il s’agit de superposer ces informations synthétiques en parfaite cohérence avec l’environnement réel de l’opérateur. C’est par exemple le cas dans le domaine en plein essor de la simulation embarquée dynamique, ou des avatars virtuels d’entités sont injectés sur le champ de bataille réel, en cohérence avec les mouvements du terrain. J’avais également mentionné dans cet article les différents projets visant à doter les fantassins de telles capacités (photo ci-dessous).

davd6

Il s’agit donc d’une tendance de fond, comme le montre ce nouveau développement piloté par l’US Navy, en l’occurrence le Naval Surface Warfare Center Panama City Division (NSWC PCD). L’idée ici est de transmettre au plongeur des informations directement dans son champ de vision : informations tactiques, messages, mais également représentation de l’imagerie sonar générée par le bateau situé en surface, au-dessus de lui.

davd4

Pour ce faire, les ingénieurs de l’US Navy ont eu l’idée de construire un casque de plongée intégrant directement un dispositif de réalité augmentée devant les yeux du nageur. Il s’agit de lunettes semi-transparentes capables de restituer à l’utilisateur des informations en haute définition. Le plongeur peut choisir d’activer ou non l’affichage en fonction de la complexité des opérations qu’il doit effectuer. Il peut également choisir de repositionner lui-même les informations dans son champ de vision. Cette fonction a d’ailleurs été mise au point après le retour d’expérience de différents plongeurs ayant testé le système.

davd2

Il s’agit bien de vision augmentée puisque les informations sont « indicatives ». L’étape suivante consistera à munir le plongeur lui-même de microsonars lui permettant de superposer l’imagerie obtenue (de son point de vue) avec le terrain réel – une fonction très utile lorsque l’environnement est obscur et troublé. Il s’agira alors véritablement d’un dispositif de réalité augmentée.

davd3

On pourra également imaginer superposer des informations simulées avec la vision réelle de l’opérateur, pour l’assister par exemple dans des tâches de maintenance sous-marine ou de déminage. Les applications dérivées pour le civil sont évidentes, avec un intérêt marqué pour l’archéologie sous-marine.

Un essai sur le terrain de cette première version est prévu dès le mois d’octobre 2016 avec une vingtaine de plongeurs-testeurs, pour une phase étendue de tests opérationnels en 2017.

ntu1

L’université de Nanyang (Nanyant Technology University ou NTU) à Singapour est, pour l’avoir visitée, un creuset d’innovation, avec plus de 33 000 étudiants et un classement au 13e niveau sur l’échelle mondiale. La preuve : les chercheurs du laboratoire VIRTUS de la NTU annoncent aujourd’hui avoir développé une puce SAR (Synthetic Aperture Radar – ou radar à ouverture synthétique) qui tient… sur un doigt et qui consommerait 75% de moins que les technologies conventionnelles, pour un coût de production 20x moindre.

Pour bien comprendre l’innovation, quelques précisions. Une caméra SAR coûte aujourd’hui 1 million de $ environ, pèse jusqu’à 200 kg, et consomme 1000W par heure. Il s’agit de dispositifs volumineux (jusqu’à 2m de longueur) destinés à équiper des aéronefs ou des satellites, mais capables, même en cas de couverture nuageuse ou de végétation dense, de détecter des objets de l’ordre du mètre, en utilisant une imagerie en bande X ou bande Ku (entre 8 et 12 GHz) – un petit rappel sur les bandes de fréquence utilisées dans le graphique ci-dessous.

ntu2

Les radars actuels SAR fonctionnent très bien, mais les contraintes d’encombrement et d’alimentation en énergie limitent considérablement leur emploi, notamment quand il s’agit de drones ou de véhicules autonomes légers. C’est là que l’on comprend toute l’innovation des chercheurs de la NTU : leur caméra SAR ne mesure que 2mmx3mm (ce qui, encapsulée dans un module, mène à une dimension du dispositif de 3cmx4cmx5cm) , ne pèse que 100g et ne nécessite que l’équivalent de l’alimentation d’un téléviseur LED, soit 200W/h. Et sa résolution lui permet de détecter des objets de 50cm à 11 km de hauteur. La puce, intégrée à une carte PC, apparaît ci-dessous en rouge.

ntu5

Les applications de l’innovation réalisée par la NTU vont de l’utilisation de SAR par des drones aériens aux véhicules autonomes terrestres, en passant par le développement de satellites d’imagerie plus petits et plus compacts : de l’ordre de 100 à 200kg en comparaison des satellites classiques d’imagerie dont le poids est plus proche de la tonne (ci-dessous).

ntu3

Evidemment, les candidats acquéreurs se bousculent. La NTU et l’équipe de VIRTUS dirigée par le Pr Zheng Yuanjin a déjà reçu des manifestations d’intérêt de SpaceX, Thales ou Panasonic. D’ailleurs, la puce doit être testée dans le cadre du programme satellitaire S4TIN dirigé conjointement par la NTU et Thales Alenia Space. L’exploitation commerciale devrait quant à elle intervenir d’ici 3 à 6 ans.

gra4

Ou plus exactement, par l’utilisation de MEMS à base de graphène ; une phrase qui nécessite quelques explications. En premier lieu, qu’est-ce que le graphène ? Il s’agit de cristal de carbone pur bidimensionnel (en gros une monocouche de carbone) obtenu soit directement à partir du graphite, en le « pelant » pour séparer les couches, soit par synthèse, par exemple en faisant chauffer à plus de 1000 degrés un catalyseur sur lequel un gaz d’hydrocarbure va se dissocier et déposer des atomes de carbone.

Le graphène est un matériau conducteur qui possède de très nombreux intérêts (des processeurs à base de graphène devraient d’ailleurs bientôt voir le jour) – parmi ceux-ci, un coefficient Seebeck unique (décidément, cet article devient de moins en moins lisible). En gros, un pouvoir thermoélectrique remarquable : un senseur à base de graphène est sensible à la totalité du spectre infrarouge.

gra1

Des chercheurs du MIT ont donc annoncé avoir combiné un capteur thermoélectrique à base de graphène avec un MEMS (micro système électromécanique) composé d’une membrane de nitrure de silicium. Le résultat : un capteur capable de détecter les températures du corps humain, dans une pièce à température normale (pour les connaisseurs du domaine, on obtient des réponses de 7 à 9 V/W, pour une longueur d’onde de 10.6 microns et une constante de temps de 23ms). Bon, je ne rentre vraiment pas dans une explication exhaustive: vous trouverez (en payant), l’article ici.

gra2

Il s’agit d’une innovation qui devrait révolutionner le domaine de la vision thermique. Car jusqu’ici, pour détecter des signatures thermiques à température normale, les senseurs devaient être refroidis par cryogénie, afin de supprimer le bruit de fond du aux radiations thermiques de la pièce.

Les capteurs étaient donc chers et volumineux, afin d’intégrer les composants nécessaires pour le refroidissement. Avec cette nouvelle technologie, sans rentrer dans les détails, il devient possible de développer un système de vision thermique très compact, voire flexible et transparent. De là à imaginer des «lunettes thermiques » ou même des « lentilles thermiques », il n’y a qu’un pas. Un pas d’ailleurs déjà franchis par une équipe de recherche de l’université du Michigan qui, il y a un an, avait présenté un prototype d’une lentille de contact infrarouge, toutefois moins sensible ‘voir photo ci-dessous) que le détecteur construit par le MIT. Cette sensibilité était le seul vrai obstacle au développement de lentilles thermiques. Le MIT annonce travailler maintenant sur un senseur fondé sur une seule couche de graphène.

gra3

Maintenant que la faisabilité est avérée, nul doute que dans le futur proche, des nouveaux senseurs infrarouges portables et haute définition verront le jour, et ce pour un coût raisonnable. Entre les processeurs, les gilets pare-balle, les écrans et maintenant la vision thermique, le 21e siècle est bien l’ère du graphène.

laser2

Décidément, alors que sort la bande-annonce du futur opus de StarWars, le laser n’a jamais été aussi présent dans le domaine de l’innovation technologique de défense. Oublions les canons lasers pour détruire les drones (quoique) précédemment décrits dans ce blog, je reviens cette semaine sur deux informations provenant, comme à l’habitude, d’outre-Atlantique.

En premier lieu, l’US Army  (AMRDEC : U.S. Army Aviation and Missile Research Development and Engineering Center) et l’US Air Force (Air Combat Command et Redstone Test Center) ont annoncé un partenariat en vue de développer des véhicules type MRAP – Mine Resistant Ambush Protected – résistants aux mines et engins explosifs improvisés, dotés d’armes laser de déminage. L’idée est ainsi d’intégrer un Laser développé par l’Air Force (Zeus III) sur un MRAP de type Cougar (voir ci-dessous), afin de faire détoner à distance des bombes enterrées à 300m de distance.

laser1

La problématique se pose typiquement dans le cas du « nettoyage » de pistes d’atterrissages minées, ou contaminées par des explosifs artisanaux, ou par des bombes non explosées. Avec l’engin baptisé RADBO (Recovery of Airbase Denied by Ordinance), il devient possible d’accélérer le nettoyage de telles zones. Pour ce faire, le RADBO dispose de deux alternateurs afin de procurer une intensité de 1100 ampères, suffisante pour faire fonctionner le laser. Ce dernier est placé sur un bras manipulateur permettant à l’équipage de manier le laser en restant à l’abri dans le véhicule. Une décharge du laser est capable de faire détoner 25 kg d’explosif.

laser5

Le prototype ayant été jugé efficace, une première commande de 14 RADBO a été engagée.

La seconde annonce a été quant à elle réalisée par l’US Air Force, qui annonce vouloir déployer des armes laser sur l’ensemble de ses avions de combat d’ici…2020. Ces « pods à énergie dirigée » permettraient de neutraliser des missiles, des drones, et, ne nous en cachons pas, d’autres avions.

laser4

Un premier candidat a été développé par la société General Atomics (connue pour ses drones PREDATOR et REAPER). Il s’agit du laser HELLADS (High Energy Liquid Laser Area Defense System), un laser de 150kW miniaturisé (moins de 5kg par kW, pour un volume de 3m cubes). Il s’agit d’un laser dit liquide, car à la différence des autres lasers utilisant des milieux solides, le faisceau passe à travers des couches de céramique baignées dans un liquide refroidissant circulant rapidement. Cela permet d’éviter le principal problème des lasers solides : la surchauffe qui oblige à tirer des impulsions laser. Le laser liquide permet quant à lui de générer des faisceaux continus sans surchauffe. La technologie précise est gardée confidentielle : General Atomics parle de « ThinZag Ceramic solid-state laser technology » (comprenne qui pourra).

laser3

Une ambition certaine, mais qui pourrait connaître des décalages, car la DARPA n’envisage pas la généralisation de ces technologies avant…2030. Pour la sortie du 12e épisode de StarWars , sans doute…

boeing1

Il y a de cela quelques mois, le sujet des survols de sites sensibles ou urbains par des drones non identifiés posait le problème de leur détection et de leur neutralisation (par brouillage ou tir) – des solutions seront d’ailleurs bientôt dévoilées par les industriels français. Boeing a pris les devants en dévoilant récemment une solution de canon laser « low cost », le CLWS pour Compact Laser Weapon System.

boeing4

L’idée est ainsi de disposer d’un système portable constitué d’un laser invisible à énergie dirigée (2kW) capable de perforer un drone aérien en moins de 15 secondes. Le système est compact (il est transportable dans un coffre de voiture), et ne nécessite deux techniciens pour l’installer et un opérateur pour le contrôler – il est opérationnel en quelques minutes une fois branché sur une simple prise de 220V.

boeing3

L’opérateur contrôle le système à l’aide… d’une manette de XBOX 360 (ce qui rend aisé le remplacement de matériel défectueux). Une fois la cible présente dans la zone de détection du radar intégré dans le CWLS (a priori un rayon de 40km), le système passe en mode automatique pour réaliser un suivi de cible. Le ciblage est suffisamment précis pour viser un point donné sur le drone (structure, aile, charge utile..) comme le montre la vidéo ci-dessous.

Boeing avait déjà dévoilé un démonstrateur de ce concept : le High Energy Laser Mobile Demonstrator (HEL MD) destiné à équiper des véhicules de l’US Army. Le laser CWLS est également capable, in fine, de fonctionner sur un porteur mobile, fournissant ainsi une solution intéressante pour la protection de sites étendus.