Archives de la catégorie ‘robotique’

gicat1

Pour une fois, je me fais le porte-parole d’une action dans laquelle je suis directement impliqué, et que je crois véritablement bénéfique pour le monde de l’innovation de défense en France. L’idée est d’accompagner les start-up françaises dans le monde de la défense terrestre et aéroterrestre et de la sécurité, et comme vous le constaterez, la première « promotion » est de qualité!

Vous trouverez ci-dessous le communiqué officiel du GICAT (pour mémoire : groupement des industries de défense et de sécurité terrestres et aéroterrestres) que je reproduis directement. Pour toute information, adressez-vous au GICAT (ou à moi, je relaierai).

Le GICAT lance officiellement son nouveau label “Generate” permettant à des start-up françaises de comprendre et d’intégrer le monde de la défense et de la sécurité.

L’ambition première de ce label est de devenir un HUB d’échanges afin de promouvoir l’innovation au sein du secteur de la Défense et de la Sécurité terrestres et aéroterrestres. Ces industriels développent du matériel de pointe, performant, gage d’une grande technicité. Les start-up ignorent parfois qu’elles sont à l’origine de technologies pouvant avoir une utilité dans le monde de la défense et de la sécurité. Rejoindre « Generate » by GICAT, c’est leur offrir de nouvelles opportunités et leur assurer un accompagnement sur mesure afin de se développer.

Les objectifs de ce label sont les suivants:

  • Promouvoir une démarche d’intelligence collective entre acteurs de la défense & sécurité et start-up issues d’autres secteurs
  • Participer à l’excellence française en matière d’innovation et en faire bénéficier le secteur défense & sécurité
  • Mettre en avant l’importance de l’innovation au sein de l’industrie de défense et de sécurité terrestres et aéroterrestres

Afin de faciliter l’intégration de ces start-up, le GICAT mettra à leur disposition de nombreux services comme :

  • Apporter une connaissance globale des mécanismes et acteurs (institutionnels, industriels, scientifiques, etc.)
  • Organiser des rencontres avec les acteurs de la défense & sécurité : forces de sécurité, forces armées, DGA, centres de recherche, etc.
  • Mettre en relation ces start-up avec des industriels membres du GICAT souhaitant échanger et coopérer dans une démarche d’innovation
  • Accompagner ces start-up grâce à une système de parrainage assuré par des membres du groupement qui leur apporteront leur connaissance et retours d’expérience.

Le 17 mars 2017, un jury composé de la délégation du GICAT, de présidents de commissions et d’industriels – Emmanuel Chiva (AGUERIS), Jérôme Diacre (ELNO) et Yannick Rolland (ATOS) – ont retenu 5 start-up pour faire partie de la première « promo » de Generate :

gicat2

Née d’un projet de R&D personnel en 2010, Aleph-Networks est née en février 2012 autour du développement de deux technologies innovantes :

  • GrayMatter, une technologie de collecte et structuration de données, adressant les problématiques Big Data
  • SafetyGate, une technologie de réseaux distribués (p2p) permettant de répondre aux risques induits par la transmission d’informations sensibles.

gicat3

Solution complète anti-drone, CerbAir permet de détecter, localiser et neutraliser les drones malveillants avant que ceux-ci ne commettent leur méfait. Issues de la recherche française, leurs technologies d’analyse radiofréquence et de reconnaissance d’image protègent contre tous les drones civils. Enfin, le système d’alerte et de levée de doute en temps réel permet de neutraliser le pouvoir de nuisance des intrus indésirables via le recours à diverses contremesures telles que le brouillage ou le lance-filet.

gicat4

Linkurious Enterprise est une plateforme de visualisation et d’analyse big data qui permet de comprendre les connections cachées dans les données. Sa technologie est déjà utilisée par le ministère français des Finances pour la détection de la fraude à la TVA, par plusieurs banques pour améliorer la détection de blanchiment d’argent, et sur des questions de sécurité informatique. Linkurious collabore même avec la NASA, pour rendre l’information d’une de ses bases de documents facilement utilisable, en mettant au point un système plus adapté que les moteurs de recherche.

gicat5

Le premier correcteur automatique de calculs – Aujourd’hui, pour corriger les déviations numériques, les ingénieurs testent le plus grand nombre de manière possible d’écrire chaque formule pour trouver la meilleure et ensuite tester si celle-ci est suffisamment stable et précise… Mais il est parfois difficile de tout tester dans le temps imparti. Numalis valide les programmes et multiplie leur précision tout en améliorant leurs performances.

gicat6

Sterblue met en oeuvre des solutions d’inspection automatique de sites sensibles autour de trois technologies principales :

  • Perception: algorithme de navigation autonome aux abords des structures complexes
  • Curiosity : algorithme d’intelligence artificielle (Deep Learning) permettant la détection automatique de défauts dans les clôtures/intrusion
  • Cloud Sterblue permettant de stocker et visualiser l’intégralité des données traitées sur différentes interfaces utilisateurs.

 

tern0

Même si le nom ne fait pas forcément vendeur en français, le nouveau drone de Northrop Grumman est loin d’être fade. Il s’appelle TERN, pour Tactically Exploited Reconnaissance Node (oui, il n’y a pas que la DGA qui peut trouver des acronymes) et a été développé pour le compte de la DARPA et de l’ONR (Office of Naval Research). Ce nouvel appareil – drone MALE pour Medium Altitude, Long Endurance – est destiné à être transporté sur des navires militaires, pour conduire des missions de reconnaissance et de soutien.4

tern1

Première particularité, il peut décoller verticalement comme un hélicoptère, avant de basculer comme un « tilt rotor » et de passer en propulsion horizontale – l’atterrissage se fait également en mode vertical. Il possède un rayon d’action d’environ 1110 km – bon, c’est ce qui est prévu car l’oiseau est encore en phase de développement. Le drone possède une capacité de transmission de données par liaison satellitaire, et embarque une charge utile pouvant peser jusqu’à 450kg – les concepteurs imaginent bien entendu des capteurs variés, des systèmes de guerre électronique, mais aussi des charges militaires comme l’emport de missile pouvant procurer à l’engin des capacités d’appui de troupes au sol, ou à la mer.

L’idée d’un décollage vertical puis d’une transition en propulsion classique et d’un atterrissage vertical (VTOL pour vertical take-off and landing) à partir d’un navire n’est pas nouvelle – voir par exemple ci-dessous le célèbre Convair XFY-1, surnommé « pogo » qui s’est révélé trop complexe à piloter, mais qui jetait déjà les bases d’un concept tilt-rotor/VTOL. Mais le TERN présente aujourd’hui nombre de caractéristiques similaires au XFY-1, comme son aile delta et ses hélices contrarotatives. Néanmoins, à la différence d’un « tilt rotor » classique, c’est le mouvement de l’avion qui lui permet de passer à l’horizontale, et non l’inclinaison des propulseurs.

tern2

Le programme est aujourd’hui dans sa troisième phase (voir la video ci-dessous) mais les concepteurs ne souhaitent pas révéler ses caractéristiques finales (envergure, vitesse, …). La Marine américaine le décrit simplement comme le « plus gros appareil capable de rentrer dans le hangar d’un destroyer ».

Même si les dimensions finales ne sont pas connues, j’ai trouvé cette photo qui représente le hangar de Scaled Composites (une filiale de Northrop Grumman) avec un prototype de TERN en cours d’assemblage qui donne une idée de taille – et au passage indique que le véhicule est construit en matériaux composites.

tern5

Le TERN est capable de décoller de n’importe quel vaisseau muni d’une plate-forme de type Helipad, mais la DARPA a souhaité également pouvoir le faire embarquer sur d’autres navires, et pour cela a développé un concept original de bras opérateur robotisé, une innovation en soi. Le système s’appelle SideArm (ci-dessous), et est destiné à équiper des navires non munis de plates-formes hélicoptères.

tern4

Le principe est simple : le bras robotisé est muni d’un rail pour déployer et propulser le drone. Il est également muni d’un filet pouvant récupérer un engin pesant jusqu’à 500 kg (le rail jouant en ce cas le rôle d’amortisseur)– ce qui nécessitera donc une adaptation pour l’utiliser avec le TERN. La vidéo ci-dessous présente le concept, également en cours de développement.

La robotique est donc bien en passe de révolutionner les opérations, puisque l’on voit apparaître des systèmes de robots, combinant leurs automatismes pour fournir une nouvelle capacité. Il est certain que les prochaines années verront le développement de concepts qui pouvaient autrefois paraître surréalistes, mais qui, aujourd’hui, convergent pour accompagner et soutenir les opérations conventionnelles. Une nouvelle ère s’ouvre.

 

 

swarm7

Nous avons déjà parlé dans ce blog d’essaims de drones (voir par exemple cet article sur le programme Gremlins de l’US Air Force, ou celui-ci traitant des drones CICADA). Cette fois ci, il s’agit de la démonstration de la viabilité du concept par une expérimentation en grandeur nature.

Rappelons déjà ce que c’est qu’un essaim de drones : il ne s’agit pas simplement de mettre de nombreux drones ensemble, mais surtout de les faire fonctionner de manière intelligente, adaptative et coordonnées. C’est une problématique étudiée depuis longtemps : dans les années 1990, de nombreux travaux – notamment ceux du Pr Rodney Brooks au MIT (Massachussetts Institute of Technology) – traitaient de la robotique en essaim.

swarm6

L’idée est de s’inspirer des capacités des animaux sociaux, et notamment des insectes. Elle consiste à considérer que chaque individu est relativement simple dans son comportement, mais capable de communiquer et de se coordonner avec ses congénères pour produire un comportement complexe et coopératif.  Les avantages de l’adaptation d’une telle approche sont nombreux : la simplicité des unités élémentaires (et donc leur coût), la redondance, la capacité à couvrir des zones importantes (par exemple pour réaliser de la surveillance, ou de la saturation de communications).

L’US Air Force vient d’annoncer qu’ils ont mené le plus grand test d’essaim à ce jour : 3 avions F18/SuperHornet ont ainsi largué 103 (!) drones Perdix pour une simulation de mission coopérative de surveillance. Et avec succès.

swarm5

Le drone Perdix est un drone simple, développé lors du programme PERDIX doté de 20 millions de dollars (donc un petit programme) – il est aujourd’hui dans sa sixième version. Chaque drone, d’une envergure de 30 cm, pèse 300g environ et est construit en kevlar et en fibres de carbone. A l’origine conçu par le MIT, le Perdix (sans « r ») est capable de voler à 112km/h, et est doté d’une micro-caméra et d’une batterie au lithium. Le drone est développé à partir de composants sur étagère (composants de smartphones, en particulier) et est fabriqué en utilisant des techniques de fabrication additive (impression 3D).

swarm3

Le Perdix ne possède pas d’intelligence « locale » : un système distribué réparti leur confère une intelligence collective, chaque drone se synchronisant ensuite avec ses voisins immédiats. Si la mission est donc claire, la manière de la remplir dépend de la configuration de l’essaim, et s’adapte en conséquence (ci-après, une image de l’une des configurations). C’est d’ailleurs la seconde expérimentation : lors de la première, 90 drones avaient montré avec succès leur capacité au vol collaboratif.

swarm2

Comme on le voit dans la vidéo ci-après, la démonstration a montré avec succès que l’essaim pouvait adopter différentes configurations de vol correspondant à une simulation de mission de surveillance.

Au-delà de l’exercice lui-même, le programme Perdix est innovant, car il s’appuie sur le DIUx (Defense Innovation Unit eXperimental), une structure créée il y a deux ans dans la Silicon Valley par le Secrétaire d’Etat à la défense actuel, Ashton Carter (lui-même ancien chercheur en physique théorique). La structure cherche d’ailleurs aujourd’hui un industriel capable de produire plus de 1000 drones Perdix.

SD visits in California

DIUx est un poste avancé de la défense américaine en Silicon Valley, chargé de s’assurer que des technologies critiques n’échappent pas à la Défense américaine. Il rassemble des spécialistes en technologies, des industriels et des investisseurs en capital risque. DIUx répond à la difficile question du financement de l’innovation de défense, en s’assurant que des start-ups innovantes peuvent accéder à des programmes gouvernementaux sans en subir les inconvénients (notamment la longueur des cycles). La démarche est intéressante et mérite d’être étudiée pour notre pays – reste à voir si, aux Etats-Unis, elle survivra à la prochaine présidence…

 

dogo6

Il ressemble à de nombreux robots terrestres comme ceux développés par Nexter Robotics ou MacroUSA, est léger (11kg) et rapide (4 km/h – ce n’est pas Usain Bolt, mais c’est néanmoins rapide pour un micro-engin terrestre autonome), mais il a quelques caractéristiques spécifiques… comme une vision à 360degrés et un Glock 26 9mm incorporé avec un système intuitif  de visée et de tir!

dogo3

Le DOGO est le dernier-né de la firme israélienne General Robotics (il a été présenté lors du dernier salon Eurosatory). Conçu pour des missions de soutien tactique aux équipes d’intervention, aux unités d’infanterie et aux forces spéciales, c’est un petit robot chenillé, ce qui lui permet d’évoluer sur des terrains irréguliers et de monter des escaliers sans difficulté (jusqu’à une pente de 45 degrés). Doté d’une autonomie de 4h (après 3h de charge), ce robot conçu en matériaux composites est également très discret puisqu’il peut modifier sa configuration pour passer de 28cm de hauteur à seulement 14cm.

dogo5

Israel n’a plus à prouver sa capacité à développer des concepts non seulement novateurs, mais surtout immédiatement opérationnels. Et l’on peut dire que pour le coup, sans déchaîner de surenchère technologique, ils ont pensé à tout. En premier lieu, la couverture visuelle est assurée par 8 micro-caméras positionnées sur 2 bras mobiles placés à l’arrière du robot. L’image est envoyée à la station de contrôle, en l’occurrence une tablette Panasonic Toughpad FZ G1 durcie, via une connexion haut débit cryptée (2.4GHz à 28dBm). La portée est de 400m – elle se réduit à 100m si des obstacles importants comme deux murs en béton se situent entre le robot et l’opérateur (selon General Robotics) – cela faisait partie des spécifications techniques.

dogo4

Les concepteurs ont particulièrement travaillé sur la SSI, afin de parer à toute tentative de piratage de la liaison opérateur-drone, qu’il s’agisse de contrôler le robot ou d’intercepter les flux de données. Ils ont ainsi fait tester le système par une unité spécialisée dans le piratage de données cryptées. Cette dernière est finalement parvenue à rentrer dans le système, mais après quelques heures, un tempo difficilement compatible avec les caractéristiques des missions concernées.

Le DOGO est également muni de micros, ce qui permet à l’unité qui l’opère d’écouter discrètement l’environnement, utile notamment dans le cas de prises d’otages. Il dispose également d’un haut-parleur permettant aux équipes de négocier avec les preneurs d’otages.

Le DOGO est muni d’un compartiment mobile, qui peut incorporer des moyens non létaux, mais aussi le fameux Glock muni d’un système de visée et de contrôle du tir. Le robot peut ainsi permettre à l’opérateur de viser (avec un dispositif de visée laser) et tirer (« point and click ») jusqu’à 14 balles sur la cible. Il intègre également un dispositif d’illumination en infrarouge proche (NIR) pour lui permettre d’opérer dans de faibles conditions lumineuses.

dogo1

Un redoutable « couteau suisse » donc, qui nécessite néanmoins, et heureusement, la liaison avec un opérateur humain pour le contrôler. Inutile de fantasmer donc sur « une bête féroce autonome, capable de vous chasser avec un 9mm », même si le DOGO tient son nom du dogue Mastiff argentin ; il ne s’agit ni plus ni moins que d’un auxiliaire robotique, une arme télécommandée astucieuse et conçue pour le terrain. Le slogan de la société ? « Mieux vaut risquer un DOGO qu’un personnel ».

 

pico2

Dans les films « techno thrillers », on trouve souvent une scène emblématique dans laquelle les gentils, assemblés devant un écran géant dans le poste de commandement, observent un micro-drone envoyé furtivement dans l’antre des terroristes (je vous recommande à ce sujet l’excellent film « Operation Eye in the Sky » avec Alan Rickman et Helen Mirren). Dans la réalité, les choses sont plus complexes, même si des drones insectes ou drones colibri (comme celui de la DARPA) sont en cours de développement, sans parler du célèbre Black Hornet, qui est toutefois assez volumineux pour être repéré. Jusqu’à maintenant, les plus petits drones comme le Robobee (ci-dessous) développée par l’Ecole d’Ingénierie de Harvard, nécessitait une connexion permanente filaire pour lui fournir l’énergie nécessaire. Un peu compliqué pour une opération antiterroriste, ou alors il faut une très grande rallonge ( !).

Voici donc Piccolissimo (du nom de son inventeur, Matt Piccoli, étudiant en thèse au sein du laboratoire ModLab de l’Université de Pennsylvanie. C’est aujourd’hui le plus petit robot volant auto-propulsé, contrôlable, ne nécessitant pas de connexion permanente filaire. Et il porte bien son nom : le robot pèse 4,5 g et mesure environ 3,5cm. Il est composé de deux parties : un corps généré par impression 3D et un propulseur (en gros une hélice). On peut le voir comme une hélice carénée par le corps du robot.

pico3

Le principe de propulsion est lui-même innovant : les deux composants tournent en sens opposé, à des vitesses différentes : 800 rps (rotations par seconde) pour l’hélice, 40rps pour le corps. Avec une petite subtilité : le propulseur n’est pas situé au centre de gravité du robot. Le résultat est que le centre de la poussée subit également une rotation de 40rps. En modulant cette rotation, on peut faire tourner le robot comme on le souhaite.

pico4

Pour ce faire, les concepteurs utilisent une liaison infrarouge, qui permet d’accélérer ou de décélérer l’hélice, de telle manière que le corps soit orienté dans la direction voulue.

pico1

Bon, il s’agit évidemment d’un travail de recherche, et pour l’instant la liaison IR doit encore être très proche. Mais le concept est novateur, et ce robot sera bientôt doté d’un senseur embarqué : une caméra capable de générer une image panoramique grâce à la rotation du corps (avec la difficulté de garder le poids de la charge utile en-dessous du gramme).

Piccolissimo illustre bien le savoir-faire du ModLab de l’Université de Pennsylvanie : des robots « frugaux », stabilisés de manière passive sans actuateurs coûteux et utilisant la force de gravité pour se diriger. Les concepteurs imaginent ainsi des essaims de micro-robots capables de couvrir une zone, notamment pour la recherche de survivants après une catastrophe naturelle, ou l’inspection de zones contaminées. Et ce, pour un coût modique, puisque la majorité des composants sont imprimés en 3D.

truffe1

Le biomimétisme (pour faire simple, l’inspiration du vivant pour tirer parti des solutions et inventions produites par la nature) n’a décidément pas fini de nous étonner. On connaissait déjà les « winglets » des avions inspirées des rémiges des rapaces, le fantassin-gecko (voir cet article), ou encore la gourde « magique » inspirée de la carapace du scarabée de Namibie. Voici maintenant la truffe artificielle pour la détection d’explosifs et de stupéfiants.

truffe5

Des chercheurs de l’institut américain NIST (National Institute for Standards & Technology) en collaboration avec la FDA et le MIT se sont ainsi inspiré de la truffe du labrador, qu’ils ont recréée en 3D. Anecdotique ? Pas vraiment. Car les chiens ont une capacité remarquable de détection olfactive. Evidemment sans commune mesure avec l’olfaction humaine, la capacité de détection d’un chien est remarquable : sa sensibilité est comparable aux meilleurs détecteurs industriels, mais elle est surtout instantanée alors qu’un détecteur artificiel doit réaliser la collecte d’échantillons, le traitement du signal, son analyse, sur plusieurs cycles. L’odorat du chien permet ainsi de détecter des traces de nitroglycérine présentes à un rapport de concentration de 0.5 ppb (partie par milliard) soit 0.5 microgrammes par litre !

truffe4

La question était de savoir si cette détection était uniquement due à une caractéristique des quelques 300 millions de cellules olfactives du chien, ou si la forme de la truffe en elle-même participait à cette performance. Les chercheurs ont ainsi montré que l’efficacité de la détection résidait dans le fait que le chien est un détecteur actif de substances : c’est un « analyseur aérodynamique » qui fait entrer l’air par des petites inspirations et expirations très rapides ; la géométrie de la truffe génère alors des turbulences aérodynamiques qui optimisent la détection des substances par les cellules olfactives. Cela peut être observé dans un dispositif appelé chambre de Schlieren, et qui permet de visualiser les flux d’air et leur évolution.

truffe2

Par rapport à une simple inhalation, le mécanisme de « reniflement rapide » est ainsi 4 fois plus efficace. Les chercheurs ont donc réalisé des impressions 3D (sur une gamme d’imprimantes différentes) de « truffes artificielles » modélisées à partir d’un labrador de type « golden retriever ».

Ils ont ensuite équipé un détecteur d’explosif de type robot renifleur de cette truffe artificielle. Et les résultats sont édifiants. Avec une stratégie de reniflement inspirée de celle du chien (des inhalations et expirations rapides), le détecteur, à 4cm de la source, est 16 fois plus efficace que le détecteur « nu » et jusqu’à 18 fois plus efficace à 20cm de la source.

truffe3

La vidéo ci-après permet de bien visualiser le flux d’air à l’entrée des « narines ».

Evidemment, les chercheurs n’ont pas dans l’idée de doter les robots de nez artificiels de labradors. Mais cette découverte peut permettre d’orienter les futurs développements de robots détecteurs, à la fois en termes de géométrie du capteur que de stratégie de direction des flux d’air. Car un robot détecteur se fatigue moins qu’un chien renifleur, et surtout ne nécessite pas une longue période de dressage. A défaut de vous rapporter votre journal…

dedrone2

Dans le domaine de la lutte anti-drones, il y a autant de stratégies que d’acteurs, et cela va de l’utilisation d’oiseaux de proie dressés à leur interception (si,si), à l’envoi de drones chasseurs de drones, en passant par l’utilisation d’armes à énergie dirigée (voire l’utilisation de carabines). Avec un effet recherché constant : capturer ou faire chuter le drone, ce qui pose de nombreux problèmes notamment en cas de survol de zones habitées.

Dans cette course à l’armement, l’allemand Deutsche Telekom et son partenaire DeDrone ont adopté une stratégie qui peut faire penser à l’Iron Dome de défense antimissile israelien: constituer un dôme virtuel de protection, appelé Magenta Drone Protection Shield, implémentant une panoplie de contre-mesures anti-drones allant du plus anodin au plus critique.

dedrone1

Dans un premier temps, l’objectif est de détecter et d’identifier un drone pénétrant dans l’espace aérien sensible. En soi, c’est déjà une tâche complexe. Elle nécessite une combinaison de capteurs ; en l’occurrence des caméras dans le visible et l’infrarouge, des scanners de fréquence (conçus par Rhode & Schwartz), des réseaux de microphones – y compris dans le spectre ultrasonique (construits par Squarehead), des radars (Robin).

De la même manière qu’un sonar (ou un logiciel antivirus), chaque drone se voit ainsi attribuer une « signature » caractéristique, constituée d’une combinaison de ces détections. Cette signature unique, baptisée « DroneDNA » par la société, est hébergée sur un serveur Cloud,  et permet non seulement la détection, mais surtout l’identification du drone et de ses caractéristiques par un système de reconnaissance et de classification automatique. Inutile de le préciser : le système discrimine évidemment entre un drone, un oiseau ou un hélicoptère…

dedrone3

Une fois le drone identifié vient le temps des contre-mesures. Au-delà des actions classiques (aveuglement par laser, ou brouillage des fréquences qui sont des solutions éprouvées), DroneTracker implémente également une panoplie d’actions plus… ésotériques. Pour l’instant, en analysant la solution, il semble que ces contre-mesures soient déléguées à des systèmes tiers, mais deux d’entre elles ont retenu mon attention.

La première, c’est l’émission d’un signal de type EMP courte portée dirigé. Pour mémoire, l’EMP (ElectroMagnetic Pulse – IEM en français) est une émission d’ondes électromagnétiques brève (pulse) et de très forte intensité qui peut détruire de nombreux appareils électriques et électroniques et brouiller les communications. L’effet EMP (ou effet Compton) a été observé pour la première fois lors des essais nucléaires menés par les Etats-Unis dans l’espace en 1962, et baptisés Starfish Prime (photo ci-après). Lors de l’explosion d’une bombe de 1,44 mégatonnes à 400km d’altitude, 300 lampadaires d’Hawaï ont été éteints (ils se situaient à plus de 1400 km), les alarmes des maisons et des véhicules ont été déclenchées, les systèmes avioniques ont été endommagés, et les réseaux de communication neutralisés.

dedrone5

Utiliser une impulsion EMP pour neutraliser un drone n’est donc pas véritablement anodin (il faut espérer qu’aucun hélicoptère ne se trouvera dans les parages). Mais les armes à énergie dirigée de type EMP existent bien, et dans un prochain article, nous ferons un focus sur celles-ci. Reste ensuite à examiner si leur emploi (soumis de toutes façons à autorisation) est bien adapté à une telle situation. Sans parler des risques occasionnés par la chute de l’objet.

Mais les concepteurs ont imaginé un autre mode d’action : le déni d’image en connectant un système domotique au DroneTracker. Faisons simple : pour ne pas prendre d’image ou de vidéo, il suffit (d’après les concepteurs) de fermer automatiquement… les fenêtres, les volets, les portes. Ce qu’on pourrait appeler une fausse bonne idée. Imaginons comment des pirates pourraient ainsi s’amuser à faire voler des drones près des installations ciblées aux seules fins de perturber le fonctionnement des portes et des fenêtres.

Un mode d’action qui peut d’ailleurs aller plus loin : des hackers ont ainsi réussi à pirater des ampoules connectées à l’aide d’un drone.  Bon, il s’agissait de chercheurs de l’institut Weizmann qui faisaient une expérience sur les vulnérabilités de l’Internet des objets. En l’occurrence, le drone a été envoyé près d’un immeuble dans lequel se trouvaient des ampoules connectées Philips Hue.

dedrone4

En exploitant une vulnérabilité du logiciel de ces ampoules (car, on ne le répétera jamais assez, les objets connectés sont plus vulnérables, et moins régulièrement mis à jour d’un ordinateur classique), ils ont injecté un programme malicieux (malware) dans une première ampoule. Le malware a été ensuite transmis par la première ampoule aux ampoules adjacentes, créant ainsi un réseau qui a pu être contrôlé à distance par les hackers. En ce cas, la vulnérabilité était davantage dans les standards utilisés pour la connexion des objets que dans le firmware de l’objet lui-même. La vidéo ci-dessous est assez impressionnante, d’autant que le coût d’une telle attaque est de quelques centaines d’euros.

La course aux armements entre systèmes de drones et systèmes anti-drones est donc en train de s’enrichir d’un troisième acteur : l’internet des objets qui peut à la fois constituer un effecteur… et une cible.