Articles Tagués ‘intelligence artificielle’

corti6

La vision artificielle a fait des progrès considérables dans ces dernières années, avec certes le développement de nouveaux capteurs, mais aussi en raison de l’apparition à la fois de processeurs spécialisés adaptés spécifiquement à cette problématique, et de nouveaux algorithmes, capables de fonctionner en temps réel, ce qui était inconcevable il y a quelques années. Dans ce domaine, de nombreuses sociétés apparaissent, mais celle-ci semble développer une approche originale, et que je pense assez adaptée (je vous dirai pourquoi).

corti1

Cortica est une société israélienne, issue du célèbre Technion, l’équivalent israélien du MIT. La société a été fondée en 2007 par trois chercheurs spécialisés dans l’informatique, l’ingénierie et les neurosciences, dont son dirigeant actuel, Igal Raichelgauz. Après avoir levé un financement d’environ 40M$, la société compte aujourd’hui une équipe conséquente de chercheurs en IA, mais également des experts militaires issus de la communauté israélienne du renseignement ( !) ce qui en dit long sur les applications visées.

L’approche de CORTICA est résolument inspirée par la biologie, et en particulier par le fonctionnement du cortex visuel primaire. Elle développe en effet une technologie d’apprentissage non supervisé (pour faire simple, je rappelle que l’apprentissage non supervisé a pour objectif de découvrir de la valeur dans des données qui ne sont pas structurées a priori, afin de réaliser une extraction de connaissances) afin de disposer d’une IA capable de comprendre l’image « comme un humain ».

corti2

En gros, l’IA cherche à identifier par elle-même des caractéristiques, des motifs (patterns), des relations entre différentes images, et ce de manière autonome, l’ambition étant – je cite – de constituer « un index universel visuel du monde ». Pour ce faire, la société a conçu une architecture d’apprentissage qui s’inspire du cortex visuel primaire des mammifères – peu de détails ont filtré, mais on peut imaginer en particulier qu’il s’agit de coder ce que l’on appelle des neurones à spikes – pour une description plus détaillée, je vous propose de relire cet article.

Cette architecture cherche à permettre un apprentissage non supervisé par observation, ce que l’on pourrait appeler de l’apprentissage prédictif (c’est le terme employé par Yann le Cun, chercheur en IA et directeur du laboratoire parisien d’IA de Facebook). En gros, au lieu de devoir constituer de grosses bases de données d’images « labellisées », donc traitées au préalable afin d’expliquer au système ce qu’il est supposé reconnaître, on présente à l’IA des images, et – comme un nouveau-né qui commence à observer le monde – elle apprend progressivement le sens et les relations entre ces différentes images présentées. Si je crois particulièrement à cette approche et surtout à l’inspiration biologique du cortex visuel primaire, c’est parce que dans ma – de plus en plus lointaine – jeunesse, j’ai travaillé au sein du groupe de bioinformatique de l’Ecole Normale Supérieure sur le sujet de l’apprentissage et de la vision active, inspirée de la modélisation des colonnes corticales du cortex visuel primaire, et que les résultats préliminaires, alors limités par la puissance de calcul dont nous disposions à l’époque, étaient déjà encourageants.

corti3

Cortica vise à déployer sa technologie en l’embarquant dans différents systèmes, qu’il s’agisse de véhicules autonomes, de systèmes automatiques d’analyse d’imagerie médicale, ou d’applications grand public. Mais on voit immédiatement le potentiel d’une telle technologie dans le domaine de la défense et de la sécurité. Le ROIM (renseignement d’origine image) a besoin de telles technologies afin de pouvoir très rapidement générer des « points d’attention » sur des images (images satellites, caméras de surveillance…) et leur donner du sens.

corti5

Il s’agit donc d’une tendance de fond en IA, qui bénéficie directement à la Défense, et qui est d’ailleurs accompagnée par l’émergence de nouveaux moyens de calcul dédié. Google a présenté récemment son Tensor Processing Unit (ci-dessus, et voir ce lien) qui met en œuvre une accélération hardware des réseaux de type Deep Learning. Mais les réseaux de neurones à spikes – tels que ceux a priori mis en œuvre dans la technologie de Cortica – connaissent un développement important, également en France.

Nous avions parlé dans ce blog du projet AXONE (ci dessous) soutenu par la DGA. Simon Thorpe, le chercheur à l’origine de cette technologie, dirige le CERCO, Centre de recherche sur le cerveau et la cognition (Cerco) – rattaché au CNRS et à l’université Toulouse-III. Via la structure Toulouse Tech Transfer (TTT), il vient de céder une licence d’exploitation de sa technologie de reconnaissance à BrainChip, spécialiste des solutions de reconnaissance pour la surveillance civile et qui avait racheté en septembre la société Spikenet Technology.

corti4

BrainChip utilisera cette technologie en vue d’optimiser son microprocesseur Snap, qui analyse en temps réel des flux vidéo. La tendance de fond semble donc se confirmer, avec de nouveaux acteurs en parallèle des Google, Facebook et autres géants, et avec des applications potentiellement considérables dans le domaine de la Défense et de la Sécurité. En attendant leur portage sur de futurs processeurs neuromorphiques, mais c’est une autre histoire.

Pour faire écho à mon récent billet d’humeur, on voit donc que les technologies d’IA commencent à atteindre un degré de maturité considérable, et suscitent un intérêt certain dans nombre de pays compte tenu des enjeux sous-jacents. A la France de maintenir et d’amplifier l’avance qu’elle possède dans le domaine.

Image1

Dans le contexte actuel de transformation profonde de l’Etat, et au moment où la nouvelle ministre des armées prend ses fonctions, je me permets un petit billet d’humeur sur le sujet de l’innovation technologique de défense, avec en toile de fond l’exemple – non limitatif – de l’intelligence artificielle.

Rappelons tout d’abord que la France a des atouts incontestables dans le domaine de l’innovation. C’est une nation majeure des mathématiques avec 13 médailles Fields décernées à des chercheurs français, elle possède une DGA, une particularité française, composée d’ingénieurs spécialisés dans les domaines de la défense et de l’armement. Elle siège au conseil de sécurité des Nations-Unies et possède une dissuasion nucléaire crédible. Malgré sa taille en regard de nos amis américains, russes ou chinois, la France tient son rang dans le domaine spatial (qui est loin d’être un sport de masse comme l’a montré l’échec du programme spatial brésilien), elle possède le second domaine maritime mondial, elle compte un écosystème dense de start-ups, de PME et de champions industriels, bref, nous ne sommes pas ridicules.

FieldsMedalBack

Mais aujourd’hui, l’innovation de défense est faite de ruptures (les nanotechnologies, la fabrication additive, l’internet des objets, …), de convergences, mais aussi de « game changers », d’innovations tellement critiques qu’elles conféreront aux pays qui les détiendront un avantage stratégique majeur. Et il est absolument indispensable de ne pas faire l’impasse sur ces « game changers », comme nous avons pu le faire dans le passé. L’exemple le plus illustratif, c’est le retard du programme français dans le domaine des drones (je ne commenterai pas).

Prenons l’exemple de l’intelligence artificielle qui est particulièrement illustratif. En soi, l’IA n’est pas un domaine nouveau. Les théories à l’origine de l’essor du « Deep Learning » (apprentissage profond automatique permettant à un ordinateur de faire de la reconnaissance vocale, de la reconnaissance faciale, la vision par ordinateur etc…) étaient connues depuis les années 50 (avec des progrès conséquents dans les années 80). Mais ce qui explique la progression exponentielle du domaine aujourd’hui, c’est la convergence entre des capacités de calcul sans commune mesure avec celles de la dernière décennie, une variété de techniques algorithmiques parfaitement explorées et identifiées, des capacités d’ingénierie abouties et une masse de données produites chaque jour permettant un réel essor de l’apprentissage machine. Une convergence permettant aujourd’hui un « big bang » incontestable du domaine.

bigbang

Or l’IA devient aujourd’hui un sujet stratégique. Aux Etats-Unis, c’est la notion de « third offset strategy» qui met l’accent sur les développements de l’Intelligence artificielle et les ruptures technologiques résultante (autonomisation des drones, robotique en essaim, …)

l’IA est ainsi devenue un outil de sauvegarde de la défense et de la souveraineté, de nature à générer une véritable rupture stratégique. Les avancées militaires liées à ce domaine ont été amplement discutées dans ce blog : capteurs abandonnés intelligents, plates-formes de renseignement, robotique autonome, simulation, etc…  Le document « Chocs Futurs » du SGDSN cite explicitement le sujet: « Le système de combat collaboratif, comprenant des composantes pilotées comme des composantes autonomes, bénéficiera d’une capacité d’analyse et d’un délai de réaction sans commune mesure avec un ensemble de systèmes pilotés par des humains. De ce fait, les armées qui disposeront de ces capacités bénéficieront des effets d’une rupture majeure dans l’équilibre des forces. »

aiautonomy

Il est donc absolument indispensable, de tenir notre rang dans ce domaine, et d’anticiper la généralisation de l’IA dans les systèmes militaires. Faute de quoi, entre les acteurs transnationaux comme les GAFA (Google Amazon Facebook Apple… mais la liste est bien plus longue) et les pays investissant massivement sur ces technologies, le risque pour la France est de perdre non seulement des parts de marché liées aux technologies du futur mais aussi des pans de son autonomie d’appréciation et d’action en Défense et Sécurité.

En matière d’IA, la France bénéficie de quelques atouts notables comme je l’ai mentionné en introduction. Son système de financement de la recherche et l’excellence des laboratoires de recherche appliquée, notamment en sciences mathématiques et informatiques en font un creuset reconnu d’experts de niveau mondial. Ce n’est d’ailleurs pas un hasard si l’un des laboratoires les plus en pointe dans le domaine, celui de Facebook, est implanté à Paris et dirigé par un Français, Yann le Cun.

Le domaine est également tiré par l’essor de l’Internet des Objets, un secteur dans lequel la France est en pointe (comme l’a montré le succès de la présence française FrenchTech au CES de Las Vegas).

CES

Pour que la France puisse développer et conserver son avantage, il faut trouver les moyens d’accélérer la transition entre la recherche académique, encore principalement financée par l’Etat, et l’industrie. Car aujourd’hui, ce sont parfois d’autres acteurs qui puisent dans le réservoir français de compétences issu des investissements étatiques et n’hésitent pas à investir pour financer la continuité du processus de maturation.

Soutenir, accompagner, investir dans la recherche sur l’IA, c’est pouvoir continuer à disposer d’une base industrielle et technologique de défense performante, à la fois pour garantir notre sécurité intérieure, prévenir toute surprise stratégique, mais également pour rester un pays influent dans le monde.

Pourquoi ce billet ? Parce que pour l’instant, même si la DGA lance un programme ambitieux sur le domaine, j’ai un sérieux doute sur la pérennisation des budgets de recherche et d’innovation, à l’heure où 2,7 milliards sont encore gelés. Le risque serait – par exemple pour le domaine de l’IA – de ne vouloir compter que sur le monde civil pour développer cette capacité, qui serait ensuite « adaptée » par les gentils industriels en autofinancement. A cela, deux commentaires.

En premier lieu, les technologies les plus « différenciantes » ont tendance… à être rachetées. A titre d’exemple, voici un graphique qui montre toutes les acquisitions récentes dans le domaine de l’IA par des grands acteurs transnationaux. Autant de technologies « perdues » ou diluées pour le monde de la défense.

ttimeline

Ensuite, la transposition ne peut être simple et directe. Tout n’est pas dual, et c’est bien le rôle des industriels de défense de travailler avec les start-ups, avec les laboratoires, avec la DGA, avec les Forces, pour pouvoir développer une technologie adaptée aux défis capacitaires actuels. Ne faisons pas l’erreur de croire que le monde civil va résoudre les problèmes des militaires: il faut maintenir un effort d’étude, de recherche industrielle, financée par la Défense afin de s’assurer d’aller assez vite, et surtout dans les bonnes directions.

imgp

Ne désarmons donc pas, ni dans ce domaine, ni dans d’autres domaines stratégiques comme les armes à énergie dirigée, le calcul et la cryptographie quantique, ou encore l’hypervélocité. Il en va de notre autonomie stratégique, de notre rang dans le monde, mais aussi du maintien de notre base industrielle. La recherche de défense doit être préservée, pour le succès des armes de la France.

ge2

Nul doute, alors que la bataille de Mossoul débute, que la guerre électronique (GE) prend une grande part dans la préparation et l’implémentation des opérations militaires modernes. Outre la défense de ses propres moyens électromagnétiques, l’écoute et le renseignement, il s’agit d’empêcher l’utilisation du spectre électromagnétique de l’adversaire, par le leurrage, le brouillage, ou l’intrusion dans ses systèmes.

Mais ne croyons pas que cette capacité est l’apanage unique des grandes puissances. Tous les combattants aujourd’hui sur le théâtre s’affrontent sur le terrain des ondes, à l’aide de brouilleurs, intercepteurs, ou en leurrant les réseaux de communication. La compréhension fine des émissions électromagnétiques sur le champ de bataille est donc aujourd’hui incontournable pour conférer un avantage tactique aux combattants impliqués. Cela permet d’interférer avec un guidage de missile adverse, de garantir la fiabilité des données de géolocalisation (qui pourraient être volontaire modifiées par l’adversaire, etc…), et évidemment, d’interférer avec les systèmes ennemis, par exemple en rompant leur chaîne de commandement.

ge4

Dans ce contexte, la société BAE, à la demande de la DARPA américaine, a développé un terminal ultraportable de GE. L’idée est d’avoir un dispositif tactique portable capable de conférer à son porteur la capacité de comprendre les différents signaux de radiofréquences dans lesquels il est immergé.

Il ne s’agit pas uniquement d’électronique (même si la taille et le poids sont en l’occurrence critiques), car pour pouvoir comprendre le « champ de bataille des fréquences », il est nécessaire de disposer d’algorithmes mettant en œuvre des techniques d’analyse du signal et d’Intelligence Artificielle. Cette analyse doit être réalisée au niveau tactique, sur le terrain (au lieu de devoir communiquer les signaux et de procéder à leur analyse au niveau du poste de commandement). Cette analyse, BAE la réalise en utilisant ce que l’on appelle des algorithmes Bayésiens d’apprentissage machine. Vous trouverez sur Internet nombre d’articles expliquant cette technologie, et je me bornerai donc à dire ici qu’un algorithme Bayésien est un graphe orienté probabiliste, capable de tenir compte simultanément de connaissances a priori et de l’information contenue dans les données, et d’améliorer son analyse au fur et à mesure que de nouvelles bases de données lui sont présentées.

ge0

Evidemment, BAE ne fournit pas beaucoup d’information sur la manière dont son algorithme fonctionne (ce qui reviendrait à donner des recettes pour le contrer), mais on peut imaginer qu’il se nourrit des informations capturées lors des missions passées. Cette même approche a d’ailleurs été implémentée par la même société, en ce qui concerne les systèmes de GE de l’avion de chasse F-35.

ge3

Les systèmes portables de BAE seraient ainsi fournis avec une configuration initiale qui exploiterait au maximum les interceptions et formes d’ondes déjà connues, et pourraient évoluer en fonction des situations rencontrées sur chaque théâtre d’opérations (voire partager cette connaissance commune entre deux théâtres). En présence d’un signal analogue à un signal déjà vu, il pourrait adapter sa réponse (par exemple en augmentant la puissance d’émission radio si le signal adverse semble correspondre à une tentative d’affaiblissement du signal, ou en utilisant une autre portion du spectre si l’IA prédit qu’il s’agit d’une tentative de brouillage).

Et cela semble fonctionner puisque BAE annonce, lors des premiers tests, avoir pu identifier plus de 10 signaux différents, sur une grande largeur de spectre, et en présence de dispositifs de brouillage et d’interférence. On peut même imaginer dans un futur proche que cette IA soit considérablement dopée par son embarquabilité sur des processeurs spécialisés (je pense par exemple aux travaux de la jeune société française SCORTEX, aujourd’hui dans le domaine de la vision mais potentiellement dans d’autres domaines demain – si cela peut donner des idées à nos groupes industriels nationaux)

ge6

L’idée est ainsi d’analyser la « soupe » de signaux électromagnétiques, d’en identifier les caractéristiques, d’en cibler les plus pertinents, et d’indiquer au combattant comment utiliser ses propres technologies de GE pour pouvoir les contrer ou échapper aux détections adverses.

Ce projet est intéressant car il montre la réalité de ce que les américains (et en particulier le précédent ministre américain de la Défense, Chuck Hagel et portée par le ministre adjoint de la défense, Bob Works – ci-dessous) appellent la « third offset strategy».

ge1

La première stratégie sous l’administration Eisenhower visait à compenser la supériorité soviétique par la dissuasion nucléaire. La seconde, à la fin des années 1970, visait cette fois, à compenser la supériorité conventionnelle quantitative par l’investissement dans les technologies de l’information et le développement de doctrines et d’un complexe « reconnaissance-frappe » de précision (missiles guidés, etc.). La stratégie de 3e offset vise à assurer leur domination pure tant militaire que stratégique, et l’Intelligence Artificielle en est une composante essentielle. En multipliant le contrôle et le développement de normes sur l’IA, les Etats-Unis imposent leurs outils et leurs technologies permettant à l’IA de contribuer préférentiellement à la souveraineté américaine.

ge5

La multiplication des initiatives mettant l’IA au cœur de systèmes militaire n’est donc pas conjoncturelle mais bien préméditée. En combinaison avec la GE, il s’agit donc bel et bien de démontrer une supériorité qui va bien au-delà de l’échelon tactique. Car comme le disait le Général Siffre dans le livre « Maître des ondes, maître du monde » : « le spectre électromagnétique est le lieu de passage et d’échange des messages chargés de secrets du pouvoir politique, économique, financier, terroriste et mafieux. Qui sera maître de ces secrets cachés sur le spectre électromagnétique sera maître du monde ».

Note: ce blog évolue – vous ne devriez plus y voir de publicités, et vous pouvez aujourd’hui y accéder par un nom de domaine plus simple: VMF214.net

dw4

Nous avons déjà parlé à plusieurs reprises dans ce blog de l’ordinateur quantique : je vous renvoie par exemple à cet article.

Pour mémoire, on rappelle qu’un tel superordinateur, imaginé par le physicien et Nobel Richard Feynman, repose sur le principe de l’utilisation des propriétés quantiques de la matière. Un ordinateur quantique manipule des qbits (ou qubits ou quantum bits) – voir l’article évoqué ci-dessus – et sa puissance est une fonction exponentielle du nombre de qbits manipulés. En traduction : plus un processeur quantique peut manipuler de qbits, plus il se rapproche du superordinateur rêvé par tous les informaticiens et capable de résoudre des problèmes jusque-là inattaquables.

dw1

Un calcul d’optimisation qui prendrait l’équivalent de l’âge de l’univers par un ordinateur classique serait résolu en moins de 10 minutes par un ordinateur quantique à 3000qbits. Inutile de souligner à nouveau la rupture stratégique et de souveraineté qu’amènerait un tel outil à la nation qui le posséderait.

qc3

Il y a quelques temps, la société canadienne D-Wave Systems, située à Burnaby, près de Vancouver, a annoncé avoir développé un ordinateur quantique (à 15 millions de dollars tout de même), acheté par Google ou la NSA entre autres (bien entendu je ne fais aucun rapprochement…), et capable de manipuler 512 qbits. Google a ainsi annoncé avoir constaté qu’un algorithme d’optimisation (dit « de recuit simulé ») était plus de 100 millions de fois plus rapide sur la machine de D-Wave que sur un ordinateur classique. Un exploit toutefois considéré avec méfiance par de nombreux spécialistes, dans la mesure où D-Wave a toujours refusé de divulguer les détails de ses tests, ni de procéder à des tests indépendants.

La société revient aujourd’hui sur le devant de la scène, avec un nouveau processeur quantique capable de manipuler 2000 qbits, et 1000 fois plus puissant que son prédécesseur, le D-Wave 2X.

dw2

Ce processeur utilise des micro-composants de niobium refroidis à l’helium liquide à une température proche du zéro absolu (en l’occurrence -273°C). Avec une telle machine, D-Wave annonce vouloir révolutionner la recherche opérationnelle et – c’est à la mode – l’apprentissage machine et l’intelligence artificielle.

Une telle machine, toutefois, ne pourra résoudre que les problèmes pour lesquels elle est optimisée ; les experts n’envisagent en effet le développement d’un véritable supercalculateur quantique qu’à partir de 2030. En l’occurrence, le nouveau processeur de D-Wave ne sait résoudre que des problèmes d’optimisation dits QUBO (Quadratic unconstrained binary optimization) – parmi lesquels, il est vrai, on trouve des problèmes de « pattern matching », d’optimisation ou certains algorithmes d’apprentissage.

Et c’est là que cela devient intéressant, car le développement de processeurs spécifiquement optimisés pour l’intelligence artificielle et en particulier le « deep learning » (le renouveau des réseaux de neurones) figure sur la feuille de route de nombre de fabricants de processeurs. Ainsi, NVIDIA a développé la carte DGX1, dédiée à l’apprentissage machine (et ne coûtant qu’environ 100k€).

dw3

Avec le développement du nouveau processeur de D-Wave, on commence à entrevoir une génération de machines quantiques spécifiquement optimisées, et qui permettraient de doper considérablement l’apprentissage non supervisé. Je ne rentre pas dans les détails, mais les grands défis de l’intelligence artificielle sont de ce type : détection d’anomalies dans des réseaux, identification de « patterns » dans les profils et comportements pour la lutte anti-terroriste, analyse automatique d’images complexes, etc…

dw5

Cela explique sans doute pourquoi D-Wave a été financée par plusieurs sociétés, dont Bezos Investment (fondée par la société du créateur d’Amazon, Jeff Bezos) et surtout, In-Q-Tel, la société d’investissement…de la CIA.

alphap4

Décidément, l’intelligence artificielle est à la mode. Aujourd’hui, l’actualité est celle d’un projet commun entre l’université de Cincinnati et la société américaine Psibernetix. Et pas de Google ni de Facebook. Je reviendrai d’ailleurs dans un futur article sur les réelles promesses et les limites de ce concept marketing que l’on appelle « deep learning » et qui remet au goût du jour une technique de réseaux de neurones datant… des années 50. Mais ce sera pour plus tard, puisqu’ici, il ne s’agit pas de réseaux de neurones ni de deep learning mais d’une technique plus récente (mais des années 1960 quand même…).

De quoi s’agit-il ? D’un article publié dans le « Journal of Defense Management », présentant le système ALPHA, développé par la société Psibernetix à partir des travaux d’un chercheur nommé Nicholas Ernest, et qui a réussi à battre un pilote (retraité) de l’US Air Force, le Colonel Gene Lee, dans plusieurs combats simulés.

alpha2

On en parle pas de « dogfighting » (combat tournoyant) mais de tactiques, techniques et procédures aériennes nourries par les informations obtenues par les différents capteurs de chaque aéronef, et qui sont adaptées en temps réel par ALPHA. La technique d’intelligence artificielle sous-jacente repose sur une combinaison de logique floue et d’algorithmes génétiques. Pour faire simple : la logique floue est une technique de modélisation du raisonnement, dans laquelle les règles logiques ne sont pas « vraies » ou « fausses » mais peuvent prendre toute valeur entre « complètement vraies » et « complètement fausses » (je simplifie, bien entendu). Les algorithmes génétiques, quant à eux, cherchent à trouver la solution d’un problème en le modélisant sous forme d’une « population de solutions », dont les plus adaptées se recombinent entre elles sur le modèle de l’évolution, afin de cribler en parallèle tout l’espace de recherche, puis de converger vers une solution adaptée, génération après génération (là encore, je simplifie à outrance).

ALPHA repose donc sur une combinaison de ces deux techniques, mais surtout, sur la possibilité de décomposer des problèmes complexes en problèmes plus simples, capables de fonctionner sur de petits processeurs comme ceux des ordinateurs de bureau, ou de processeurs de type « raspberry pi ». Avec une capacité d’adaptation à la microseconde.

alpha1

ALPHA a été testé dans un exercice de tactique aérienne opposant des « agresseurs » rouges, ne disposant pas de couverture AWACS et dotés de missiles à courte portée, à des avions « bleus » dotés de missiles à plus longue portée, et d’une protection AWACS. ALPHA a commencé par s’entraîner contre lui-même, avant de se confronter à un programme d’IA développé par le US Air Force Research Lab. Il s’est ensuite opposé au Colonel Lee, un expert du domaine, ancien « USAF Air Battle manager », instructeur au sein de l’école de combat aérien, et lui-même pilote de chasse chevronné.

alphap3

Le résultat : dès que le Colonel Lee a pris manuellement le contrôle d’un avion bleu, il s’est fait battre à plate couture par ALPHA, capable d’exploiter de manière remarquable les données remontées par les capteurs de chaque appareil, et les erreurs de pilotage du colonel. D’après ce dernier, ALPHA est « l’IA la plus agressive, dynamique, adaptative et crédible jamais développée ».

Selon ses concepteurs, ALPHA pourrait être utilisée dans un mode de combat human/machine team, c’est-à-dire pour contrôler une escadrille de drones escortant des avions pilotés. Sa capacité de contrôle et d’adaptation à la microseconde en font en tout cas un candidat très crédible pour une telle tâche.

mov1

Ce n’est pas la première fois que nous parlons ici des caméras thermiques intelligentes. Mais ici, il s’agit d’une réelle convergence entre deux technologies : la vision thermique, et l’interprétation automatique d’images par vision artificielle. Cette convergence est matérialisée par l’alliance entre deux références du domaine : la société FLIR bien connue pour ses technologies de vision thermique par infrarouge, et la société MOVIDIUS, spécialiste de la vision artificielle embarquée.

Movidius est une société californienne qui développe des solutions dites de VPU pour Vision Processor Unit ; son architecture baptisée Myriad 2 est en fait un processeur spécialisé dans la vision artificielle embarquée. Il se compose d’un processeur DSP de traitement du signal permettant d’exécuter 150 milliards d’opérations par seconde, en ne consommant que 1,2 watts.

mov2

Ces deux sociétés viennent d’annoncer le fruit de leur collaboration : la caméra BOSON, une caméra thermique embarquant le Myriad 2 (possédant 12 cœurs de calcul programmables) et permettant d’implémenter in situ des algorithmes de traitement avancé de l’image, filtrage du bruit, et analyse d’objets. La caméra BOSON intègre les algorithmes de base, et l’utilisateur dispose de puissance de calcul et de mémoire disponibles pour implémenter ses propres traitements.

Le résultat ? Une caméra thermique miniaturisée, de faible consommation, et embarquant une intelligence artificielle permettant le traitement automatisé et en temps réel des images. Il devient ainsi possible de réaliser de la détection et du suivi d’images, de la détection de geste ou de mouvement, ou d’extraire des caractéristiques de haut niveau permettant d’implémenter une identification automatique de cible d’intérêt et un traitement de l’image correspondante.

Cela permet de réaliser l’essentiel des opérations au sein du capteur lui-même : toutes les opérations sont effectuées localement, sans devoir surcharger la bande passante du réseau, ni devoir transmettre des informations en vue d’en faire l’analyse sur un serveur distant. Une économie de temps, un gain de sécurité et d’efficacité : on peut ainsi imaginer qu’un drone aérien soit capable de réaliser l’interprétation automatique et immédiate des images qu’il capte, sans devoir faire appel à une liaison vers un segment sol.

Une caméra d’ailleurs facilement embarquée par un drone : la caméra BOSON est miniaturisée (21x21x11mm sans l’objectif), ne pèse que 7.5g pour l’unité de traitement, est possède une vision dans le spectre 7.5 µm – 13.5 µm. En revanche, elle est classée ITAR et nécessite donc à ce titre une autorisation d’export par les autorités américaines.

mov3

Il s’agit là d’une véritable révolution amenée, je le pense, à se généraliser : l’intégration de capacités de haut niveau (ici la vision artificielle) dans le senseur lui-même, permettant ainsi de conserver localement des capacités de traitement élaborées sans devoir transmettre l’information à un serveur distant.

Les applications vont de l’analyse d’images de surveillance, à la navigation, ou  la vision artificielle pour drones et robots,… Les grands du domaines ne s’y trompent pas : la société MOVIDIUS a été récemment sélectionnée par …Google, afin d’intégrer des capacités d’apprentissage dans les objets connectés. L’avènement des capteurs intelligents…

 

ai2

L’idée n’est pas nouvelle. Dans une ancienne vie, j’avais moi-même travaillé sur l’utilisation de réseaux de neurones et de techniques d’intelligence artificielle pour la modélisation du comportement normal d’un réseau de télécommunications, afin de détecter les écarts à la normale, pouvant signifier l’occurrence d’une intrusion. Le projet s’appelait M>Detect et avait été réalisé avec Matranet (pour les nostalgiques). Et cela fonctionnait… jusqu’au rachat de Matranet, mais ceci est une autre histoire.

Aujourd’hui, le monde entier s’enthousiasme pour l’intelligence artificielle (IA) – au passage, cet enthousiasme galopant est consécutif à la définition d’un concept marketing alliant réseaux de neurones et puissance de calcul, sous la dénomination de « deep learning ». Bref. En l’occurrence, il s’agit d’un projet du célèbre laboratoire CSAIL (Computer Science and Artificial Intelligence Laboratory) du MIT (Massachussetts Institute of Technology), qui a développé un système baptisé AI2 afin d’examiner les enregistrements (logs) d’un réseau afin d’y détecter toute anomalie pouvant être caractéristique d’une cyberattaque.

L’idée est toujours la même : permettre aux experts de réaliser un tri dans le volume gigantesque de données transitant par le réseau, sans avoir de silence (i.e. manquer une attaque).

Finalement, la technique est relativement classique : enseigner à un système la signature caractéristique de prémices d’une attaque comme par exemple une augmentation subite de connexions sur un compte utilisateurs, pouvant indiquer une attaque visant, par la force brute, à « cracker » un mot de passe.

ai3

AI2 fonctionne par apprentissage. Le premier jour, le système utilise des règles et heuristiques déterminées à l’avance, et réagit en identifiant des anomalies (les 200 anomalies les plus caractéristiques par phase d’apprentissage). Ces anomalies sont présentées à un expert ou à un groupe d’expert qui n’indique que les signatures correspondant véritablement à des attaques. Puis le système apprend, et continue à présenter les signaux aux experts, et ainsi de suite. La vidéo ci-dessous présente le concept.

Rien de nouveau sinon que AI2 semble fonctionner là où d’autres systèmes plafonnent péniblement. Sans doute de par l’impressionnante puissance de calcul disponible aujourd’hui, après 3 mois d’analyse (soit 3.6 milliards de logs réseaux analysés), AI2 identifiait 85% des signes caractéristiques d’attaques (alors qu’un simple apprentissage non supervisé n’atteint qu’un taux de succès de 8%). AI2 est le premier système à atteindre un tel niveau de performances, sans doute par l’apprentissage non supervisé de signaux caractéristiques dans les logs réseaux, et un apprentissage supervisé utilisant les retours des experts.  Au lieu d’examiner plusieurs milliers de logs par jour, une fois le système « éduqué », chaque expert ne doit plus examiner qu’entre 30 et 40 événements par jour : une tâche réalisable sans problème par un opérateur humain.

Le laboratoire a présenté un article lors du  IEEE International Conference on Big Data Security à New York. Un travail à suivre, notamment afin de déterminer si, en miroir à cette technique, il serait possible de dériver un système capable d’imaginer des stratégies de réponse, voire d’attaque.