Articles Tagués ‘intelligence artificielle’

quake2

Chers amis lecteurs, comme vous le savez, j’ai aujourd’hui de nouvelles responsabilités. Je prends à compter de ce jour avec enthousiasme et fierté la direction de la nouvelle Agence de l’Innovation de Défense du Ministère des Armées. Je ne cesserai pas d’écrire dans ce blog, à titre personnel, mais je dois avouer que ces jours, et ces dernières semaines, la préparation de la création de l’Agence a pris la totalité de mon temps de cerveau disponible.

Je vous promets donc très rapidement de reprendre le cours normal de ce blog, d’autant que de nombreuses technologies utiles pour la défense font aujourd’hui l’actualité: malwares utilisant l’IA, course à l’hypervélocité, ou agents coopératifs intelligents… Tiens, juste pour pour vous mettre en appétit: connaissez vous Quake III Arena? C’est un jeu connu depuis… oulah, pas mal de temps, qui consiste à opposer deux équipes dans un environnement en 3D temps réel, chaque équipe ayant pour objectif de capturer le pavillon de l’ennemi.

Pour la première fois, une équipe de 2 agents dotés d’intelligence artificielle a battu une équipe humaine très expérimentée. Bon, dit comme cela, rien d’étonnant… sauf que l’IA n’a pas utilisé d’informations numériques (distance entre les adversaires, statut de chaque entité…) mais a appris toute seule à comprendre l’environnement virtuel 3D présenté à l’écran, comme le ferait un joueur humain. L’IA a ainsi appris de manière autonome, en jouant 450 000 parties contre elle-même. Le résultat: l’équipe « IA » (en réalité celle de Google Deepmind) a gagné avec un taux de 74% de réussite contre des joueurs humains aguerris (65% dans un jeu de 4 contre 4, ce qui est toujours mieux que des adversaires humains). Dans le graphe ci-dessous, l’IA correspond à l’équipe FTW.

CTF_Fig_Tagging_180703_r01.width_1500

Ce résultat montre qu’il est possible, pour des agents artificiels coopératifs, d’apprendre de manière autonome, en s’aidant uniquement des informations visuelles et contextuelles de l’environnement (certes simplifié dans le cadre de cette expérimentation), donc sans tricher. Maintenant, je suis bien évidemment conscient de la simplification de cette expérimentation, et en particulier du jeu utilisé (règles élémentaires, environnement simpliste). Je ne dis certainement pas qu’il s’agit d’une révolution dans le domaine de l’apprentissage, mais je trouve juste l’approche intéressante. Appliquée à un environnement militaire, cette expérimentation amène à considérer des systèmes intelligents, capables d’élaborer et de faire émerger des tactiques en fonction des seuls indices présents dans l’environnement.

L’IA est donc encore une fois une technologie d’importance militaire évidente; j’aborde ce sujet dans l’émission « Géopolitique: le débat » de RFI dont vous retrouverez le podcast ici, dans l’attente de vous retrouver dès lors que ce blog aura repris son fil normal. Amicalement à tous mes lecteurs, et à bientôt.

son8

Il y a un domaine dont on parle peu, mais qui finalement est aussi important que la vision artificielle ou la robotique : il s’agit du son. La recherche et l’innovation en acoustique sont en effet au cœur des problématiques de défense et de sécurité, comme en témoignent les récentes « attaques » subies par des diplomates américains en Chine et à Cuba. On se rappelle que douze diplomates américains de l’ambassade de La Havane à Cuba ainsi que deux employés du consulat américain de Canton, en Chine, ont présenté sans raison apparente des symptômes similaires à ceux d’une commotion cérébrale, ainsi qu’une surdité subite. A tel point que l’on a parlé « d’attaques sonores » menées contre les diplomates.

son7

Si l’on pense qu’en définitive, de telles attaques sont en réalité le résultat d’interférences entre différents systèmes d’écoute et de transmission par ultrasons, il n’en est pas moins vrai que le son peut, en soi, jouer le rôle d’une arme. De telles armes « soniques », il y en a de plusieurs types. En premier lieu, celles qui utilisent les fréquences audibles par l’oreille humaine (entre 20 Hertz et 20 000 Hertz). De telles armes peuvent être utilisées par exemple comme outils non létaux pour dissiper une foule hostile – j’avais écrit sur ce sujet il y a quelques temps dans cet article.

son4

C’est par exemple le cas du LRAD-100X (l’acronyme correspond à Long Range Acoustic Device) qui utilise un dispositif de transduction piézoélectrique afin de créer un signal sonore concentré et amplifié, capable de calmer même l’individu le plus agressif en focalisant sur lui une onde sonore capable d’atteindre les 120dB (ou même plus – le souci étant qu’à 160 dB, vos tympans explosent).

son1

Les individus qui ont subi une attaque de LRAD mentionnent des symptômes insupportables (le sentiment que les sinus s’enflamment, un saignement des oreilles, une migraine tenace, et même la paralysie et l’insensibilité des parties du corps exposées au signal).

Voici une vidéo déjà ancienne, mais qui illustre bien l’utilisation du LRAD :

En mode infrasonique (en-dessous de 20 Hertz), le principe est le même, mais les effets sont plus… dérangeant puisqu’ils vont du sentiment de coup de poing dans le ventre, au sentiment de nausées et de migraines et jusqu’à… la libération involontaire du contenu de vos intestins (!).

Si l’on s’intéresse à l’autre extrémité du spectre, les ultrasons, les choses sont différentes. Car l’effet des ultrasons sur le corps ne se limite pas à l’audition. En premier lieu, ils ont tendance à chauffer le corps à la manière d’un four à micro-ondes, ce qui peut causer des dommages importants à nombre de cellules. Mais cela se combine à un autre phénomène, comparable à ce qu’il se passe dans le monde sous-marin : la cavitation. Lorsqu’une onde ultrasonique traverse le corps, elle peut générer une cavitation d’autant plus importante que l’onde est forte, ce qui génère la formation de bulles dans le corps, par exemple dans le liquide de l’oreille interne.

Toutefois, les ultrasons perdent rapidement de leur puissance avec la distance, ce qui les rends inadaptés à un emploi opérationnel, à moins de combiner plusieurs faisceaux. C’est d’ailleurs ce qui a pu se produire, de manière involontaire, pour les malheureux diplomates, pris dans des zones d’interférences entre plusieurs faisceaux ultrasoniques équipant des matériels d’écoute. C’est en tout cas la théorie qui prédomine aujourd’hui pour expliquer les prétendues attaques.

Innover dans le domaine sonore, c’est aussi essayer de capturer au mieux le son à des fins d’écoute ou d’espionnage. De nombreux dispositifs existent, et permettent par exemple « d’arroser » le visage d’une personne par des ultrasons, lesquels vont se réfléchir et être capturés ensuite par un dispositif audio classique. A la manière d’un radar, cette réflexion varie en fonction par exemple des mouvements de la bouche, ce qui permet ensuite de reconstituer la voix, en particulier dans des environnements bruités. On peut par exemple mentionner le système SAVAD pour « Super-Audible Voice Activity Detection » qui fonctionne sur ce principe.

son5

Dans ce domaine, l’intelligence artificielle (oui, encore elle) peut venir à la rescousse de l’espion. Tout d’abord en gommant les bruits parasites de fond. La revue Science vient en effet de publier un article dans lequel un système d’intelligence artificielle apprend à distinguer une voix en se guidant sur les mouvements des lèvres et sur l’analyse des différents sons. La combinaison « analyse des sons » et « analyse des indices visuels » semble se révéler bien plus efficace que l’analyse sonore seule. Pour ceux que cela intéresse, le système sera présenté au prochain SIGGRAPH.

Un autre usage de l’IA consiste directement à lire sur les lèvres. On rappelle en particulier que DeepMind, l’IA développée par Google, a développé il y a quelques temps une application de lecture sur les lèvres, entraînée à partir de 5.000 heures de programmes télévisés de la BBC.

son3

Le système est parvenu à un taux de réussite de 46,8 %, un chiffre très impressionnant si on le compare à la performance d’un expert humain entraîné (entre 12 et 20% de réussite). En particulier, le système semble plus robuste aux homophones (ver, verre, vert…), et peut consolider son analyse en généralisant la détection à partir de l’observation de plusieurs orateurs. De là à imaginer une IA observant à distance les lèvres pour capturer et reconstituer la parole, il n’y a qu’un pas;  guerre du son, intelligence artificielle, armes infrasoniques… les meilleurs auteurs de science-fiction n’ont qu’à bien se tenir.

menga2

Cette semaine, rencontre avec l’un de mes amis, David Menga, que certains d’entre vous connaissent sûrement. David est expert dans l’Internet des Objets, l’IA et blockchain appliqués à la smart home, au smart building et à la smart grid.

Dans la vie, il est chercheur à l’EDF Lab et coordinateur technologique du pôle de compétitivité Normand TES (Transactions Electroniques Sécurisées). Il a co-édité avec Nobuo Saito, professeur émérite de l’Université Keio au Japon, un livre intitulé « Ecological Design of Smart Home Networks, Social Impact and Sustainability ». Bref, un chercheur, un curieux insatiable, et un homme de vision notamment dans le domaine de l’Intelligence Artificielle dont nous allons bien évidemment parler. Petite interview entre amis:

David, tu es chercheur à l’EDF Lab. Bon, aujourd’hui toutes les institutions et tous les grands industriels ont leur lab. Alors c’est quoi, l’EDF Lab – un lab de plus ou un précurseur?

EDFlab est le plus grand centre industriel de recherche et formation en Europe. Son rôle est de préparer l’avenir du groupe EDF, à la croisée des mutations numériques et énergétiques.

saclay

Quelles sont tes thématiques et sujets de prédilection ?

Je travaille beaucoup sur les nouveaux relais de croissance pour la branche commerce d’EDF, comment aller au-delà de la vente simple d’électrons et offrir des services à valeur ajoutée à nos clients. Cela signifie trouver des positionnements pertinents pour EDF dans un monde numérique massivement connecté et en pleine transition énergétique vers des systèmes de production décentralisées et renouvelables. Je travaille concrètement sur la digitalisation des tableaux électriques, la transformation des supports d’éclairage en plateformes de services, et la mise en œuvre de coachs énergétiques à travers des intelligences artificielles capables de raisonner et de dialoguer avec un utilisateur en argumentant.

Alors pour les lecteurs de ce blog, tout ceci ne parle pas encore d’innovation de défense, mais bien évidemment, les technologies sont connexes – tu as d’ailleurs participé au projet SOFLAB organisé par le Cercle de l’Arbalète. Allons donc dans le dur – dans ce blog, j’ai beaucoup parlé à la fois des « games changers » comme l’hypervélocité, l’IA et le big data, le quantique (au sens large)… et des pays qui se dotent massivement de moyens pour participer à cette course à la technologie. En particulier la Chine. Quelle est ta perception de la « géostratégie » des ruptures technologiques dans le domaine ? Et d’ailleurs, vois tu d’autres ruptures que celles que j’ai citées ?

Je vois particulièrement des ruptures dans l’univers de la biologie et de la chimie quantique.

J’entrevois l’évolution des usines chimiques actuelles en usines bactériennes programmables capables de produire à la demande les matériaux indispensables à notre civilisation moderne, offrant les mêmes qualités d’usage et biodégradables.
J’entrevois la possibilité grâce au ordinateurs quantiques, de fabriquer à la demande de nouveaux matériaux répondant à des cahiers des charges précis. Ce serait une évolution majeure de l’imprimante 3D.

Plus généralement, je pense que nous allons basculer dans l’ère post silicium, celle du carbone dont on redécouvrira les bienfaits une fois capturé et domestiqué à des coûts acceptables.  En particulier, je pense que l’électronique au graphène et aux nanotubes de carbone va se développer dans la prochaine décennie.

La conséquence de tous ces progrès sera une révolution dans l’énergie, la manière dont on la produit (panneaux solaires au rendements proches de 50 % , turbines au CO2 , éoliennes silencieuses et performantes ) , la manière dont on la distribue ( câbles supraconducteurs, réseau intelligent tolérant aux pannes, courant continu ) et enfin la manière dont on la consomme. Les réseaux énergie sans fil vont se développer avec la mobilité électrique.

La santé est aussi un secteur à fort potentiel d’évolution, avec les progrès de la médecine personnalisée, prédictive, préventive et régénérative. La génomique et l’épigénétique sont au cœur de cette révolution. Enfin, j’entrevois de nouveaux modèles économiques où le consommateur est au centre de la proposition de valeur grâce à la blockchain.

Pour l’instant, toutes ces transformations sont tirées par la Chine et les Etats Unis. L’Europe place ses efforts dans la règlementation et l’éthique, certes nécessaires mais non producteurs de richesses.

De la même manière, on assiste à la consolidation des acteurs privés de la technologie – les GAFA (Google, Apple, Facebook, Amazon) mais pas seulement. Quelle est ta vision de l’évolution du paysage, et qu’anticipes-tu comme impact dans le domaine de la défense et de la sécurité ?

Je pense que les grandes entreprises GAFA et BATX (note : BATX = Baidu, Alibaba, Tencent et Xiaomi) vont prendre de plus d’importance dans les états où ils opèrent. L’affaire Cambridge Analytica montre les dérives d’un système sans contrôle, avec la manipulation à large échelle de l’opinion, ce qui pose des problèmes de sécurité nationale.

menga4

De plus, leur maîtrise de l’IA les rendra indispensables pour construire des systèmes de défense efficaces, comme le montre l’utilisation de l’outil Tensorflow de Google par les militaires américains. (Note: voir mon dernier article sur le projet MAVEN)

Parlons d’IA. La mission Villani vient de s’achever et le président a présenté le rapport il y a deux semaines lors d’une « grande messe de l’IA » au Collège de France (une première dans le domaine). En premier lieu, que penses-tu de ce rapport et des préconisations qui y sont présentées ?

Le rapport Villani pose un bon diagnostic sur l’importance de l’IA dans la société, mais apporte des réponses trop sectorielles, trop limitées. Plus de recherche en deep learning, plus de données en mode ouvert, plus de puissance de calcul disponible pour les scientifiques, cela ne constitue pas une réponse industrielle au retard colossal de la France en la matière.  Cela renforce la vassalisation de notre recherche aux intérêts des géants de l’Internet, GAFA ou BATX.

1109237-le-depute-mathematicien-cedric-villani-lrem-lors-d-une-intervention-sur-l-intelligence-artificielle-

D’ailleurs, le jour même, Google comme Samsung annonçaient la création d’un centre de recherche IA en France. Matière grise en France, subventionnée par le contribuable et profits à l’étranger, renforçant notre déficit commercial.

En un mot, le rapport Villani est un « plan calcul du deep learning ». Nous connaissons tous la suite.

C’est sévère. Alors pour rester compétitive dans ce domaine, que doit faire la France, notamment dans le domaine du hardware (et de l’open hardware) ?

La France doit investir massivement dans l’IA post deep learning, l’IA prévisionnelle, capable de raisonner et de planifier dans un univers incertain, avec des informations parcimonieuses et incomplètes. Une IA capable d’apprendre à partir de ses expériences sensorielles et de ses interactions avec les humains, intégrable dans des systèmes embarqués à basse consommation, autant qu’une lampe LED. Bref, une IA capable de s’adapter à des contextes variables en milieu ouvert.

Cela requiert de nouveaux hardwares à inventer, une nouvelle architecture post Von Neumann, couplant données et traitements et d’immenses facultés de parallélisation des tâches. Et bien sûr , une nouvelle façon de concevoir des algorithmes et de les implémenter. Le cerveau fournit un bon modèle qu’il s’agira de comprendre et de dépasser. L’Open Hardware, comme le RISCV , doit être au cœur de ce programme ambitieux car il ne s’agit pas de réinventer la poudre. Inspirons nous du programme Celerity de la DARPA.

La France doit mettre l’IA au cœur de ses formations qualifiantes, pour habituer les étudiants à mieux collaborer avec elles. Il s’agit d’offrir aux étudiants des « Legos » IA programmables et composables, le tout avec de l’open hardware et de l’open source. Il importe de créer une industrie des machines outils de l’IA, des IAs capables de fabriquer d’autres IAs plus spécialisées à partir de composants open source ou pas.

menga3

Pensez à une IA de conception de circuits électroniques comme celle de Thingtype
couplée à une imprimante 3D de PCB comme celle de Nanodimension plus une IA de génération de logiciel. Il s’agit de construire des produits/services intégrant directement de l’IA et répondant à un cahier des charges précis. En un mot, la France doit maîtriser les outils pour bâtir ce que j’appelle « l’atmosphère IA», c’est dire des IAs massivement intégrées dans notre société.

Enfin, Elon Musk a dit « le meilleur moyen de se faire une petite fortune dans le domaine spatial, c’est de commencer avec une grosse ». Si tu avais aujourd’hui de l’argent pour financer des projets innovants, et je parle là du domaine de la défense et de la sécurité au sens large, que penserais tu financer ?

En toute cohérence, j’investirais massivement dans ces fameuses « machines-outils IA » permettant de produire des IA embarquées à vocation militaire, capables de remplir soit des missions de renseignement dans des drones miniatures de type libellule, soit des missions d’attaque en essaims avec des armes infrasoniques.

maven1

Après mon dernier poisson d’avril (oui, c’en était un et il a mieux fonctionné que je ne le pensais), je reprends le fil des « véritables » nouvelles (je rappelle que le premier avril est le seul jour où les internautes sont supposés vérifier une information avant de la croire – sic).

En l’occurrence, une nouvelle qui commence à faire du bruit, et qui a déclenché l’ire des employés de Google ; le géant du net, désormais l’un des pionniers du « deep learning », fournit sa technologie au Pentagone, notamment pour réaliser l’analyse d’images prises par des drones ou des satellites.

Cela fait un certain temps qu’on le rappelle : l’intelligence artificielle est aujourd’hui tirée par le marché civil, et en particulier le grand public. Les investissements se poursuivent et même s’amplifient dans des sociétés proposant des technologies d’apprentissage machine ou d’intelligence artificielle. Dernière en date, la « licorne » chinoise SenseTime qui vient d’annoncer avoir procédé à une levée de fonds de 600 M$, pour une valorisation de la société à 4.5 milliards (oui, milliards) de dollars… Nul doute d’ailleurs que le vaste programme d’espionnage des citoyens chinois – digne du meilleur épisode à mon sens de la série Black Mirror (« the fall ») –  a contribué à valoriser les programmes de reconnaissance faciale et d’analyse d’images.

maven9

L’avance de sociétés comme Facebook, Apple ou Google dans le domaine de l’IA n’est plus à prouver. C’est donc naturellement que le Pentagone s’est tourné vers Google quand il a réalisé qu’il ne pourrait traiter manuellement le torrent d’informations (images et vidéos) déversé par les drones militaires.

Le programme s’appelle donc Maven, et est réalisé depuis 2017 par une équipe mixte (Google et le DoD américain) baptisée AWCFT pour Algorithmic Warfare Cross-Functional Team. En 2017, Greg Allen et Taniel Chan avaient publié ce rapport dont je vous conseille la lecture – le même Greg Allen a récemment déclaré que si le ministère de la défense américain a bien financé de manière importante le développement de nouveaux capteurs image pour les drones aériens, il a en revanche un peu négligé les outils d’analyse nécessaires afin de donner du sens aux données recueillies.

Pour mieux en juger, voici quelques chiffres : l’armée américaine s’est équipée de 11 000 drones aériens (!). Chacun de ces drones génère un déluge de données images (au total, l’équivalent de 37 années de vidéo)…et 99% de ces données ne sont analysées par personne. En France, le général Ferlet, commandant la Direction du Renseignement Militaire, a également évoqué le sujet sur Europe 1 en décembre dernier: « Il y a une explosion exponentielle des données à traiter. Mais je ne suis pas naïf, je n’aurais pas une augmentation exponentielle des moyens humains pour traiter ces données. Il faudra donc trouver d’autres moyens, basés sur l’intelligence artificielle. Ce sera ma priorité numéro une dans les années à venir ».

maven5

Retour donc au projet Maven. Son premier objectif : utiliser l’IA et l’apprentissage machine pour détecter et identifier des objets (véhicules…) dans les vidéos transmises par les drones. En tout, dans cette première phase du projet, 38 catégories d’objets ciblés ont été définies. Pour ce faire, du logiciel bien sûr, mais pas seulement. A priori, Google fournirait des API Tensorflow aux équipes du ministère.

maven6

Rappelons que Tensorflow, développé par Google, est un outil open source de référence dans le domaine de l’apprentissage machine – éventuellement, la société pourrait fournir également du hardware, en l’espèce, des circuits Tensor (circuit intégré développé par Alphabet/Google spécifiquement pour l’IA).

maven7

L’idée est d’accélérer au maximum le projet Maven, un projet déjà tendu puisque six mois après son lancement, l’été dernier, le projet était supposé déjà opérationnel (en particulier dans la lutte contre le terrorisme en Irak et en Syrie).

Bon, le projet Maven ne plait pas à tous ; des milliers d’employés de Google ont ainsi signé une pétition demandant à l’entreprise de mettre fin à sa collaboration avec le Pentagone. A cela, certains rétorquent que justement, l’objectif de Maven était d’éviter des frappes mal ciblées, et des dégâts collatéraux en optimisant l’efficacité des drones. Gonflé.

maven3

Mais les risques de dérive sont réels. S’il s’agit de classer des images pour présenter ensuite à des analystes humains les plus susceptibles de fournir des informations tactiques, alors il faut être certain (1) que le système ne peut pas être piraté (car on peut « orienter » l’apprentissage) et d’ailleurs (2) qu’il n’y a pas de biais natifs dans la base d’apprentissage.

Revenons sur le « hacking » des systèmes d’IA ; c’est par exemple ce que l’on appelle aujourd’hui des « BadNets » : des réseaux de neurones dont la base d’apprentissage a été volontairement altérée pour introduire des signaux destinés à permettre à un hacker de modifier la réponse du système dans certaines conditions. Ainsi, à titre d’illustration, en utilisant des micro-modifications de pixels, un hacker peut permettre à un système de détection faciale de laisser passer les images de terroristes sans lever d’alarme. Je vous conseille par exemple la lecture de cet article qui démontre comment on peut arriver à faire en sorte qu’un réseau de neurones dont l’apprentissage a été altéré puisse dans certaines conditions prendre un panneau Stop pour un panneau de limitation de vitesse (je vous laisse imaginer les conséquences pour un véhicule autonome).

maven2

Au-delà, cette méthode (utiliser un partenariat avec l’industrie privée pour accélérer le tempo de développement d’une application de défense) illustre bien la philosophie prédominante aujourd’hui : en l’occurrence, c’est la structure DIUX (Defense Information Unit Experimental) située au cœur de la Silicon Valley qui est chargée d’identifier et d’organiser les transferts possibles.

cool

Une approche qui pourrait fonctionner en France (c’est en tout cas dans la lignée des annonces réalisées autour de l’innovation de défense par la Ministre des armées) – à condition toutefois de mettre en place des dispositifs permettant à l’Etat d’acheter très rapidement des solutions commerciales, pour expérimentation immédiate. Une approche novatrice qui, je le pense, est indispensable pour aller au-delà des intentions, et capturer l’innovation de manière optimale. Faute de quoi, il sera difficile d’établir de véritables passerelles entre ces deux mondes qui aujourd’hui, au-delà des réticences « philosophiques » qu’il ne m’appartient pas de commenter, se côtoient sans véritablement s’intégrer.

USS Independence

Je commence par souhaiter à tous mes lecteurs une excellente année 2018, avec une pensée spéciale et sincère pour tous nos soldats en opérations, en OPEX comme sur le territoire national. L’innovation technologique de défense est surtout et d’abord au service des hommes et femmes qui nous protègent. Merci à elles et eux.

Pour débuter l’année, une annonce de nos alliés américains, qui concerne le LCS, ou Littoral Combat Ship. Pour mémoire, le LCS est un programme qui désigne les nouvelles frégates furtives américaines, de différentes classes (Classe Independence de type trimaran, Classe Freedom monocoque) dont environ dix exemplaires ont été construits à ce jour. Il s’agit de navires destinés, comme leur nom l’indique, à être engagés en zone littorale pour traiter en particulier des menaces asymétriques.

140423-N-VD564-014

Ces frégates ne sont pas surarmées (et le programme est d’ailleurs sous le feu de nombreuses critiques aux USA notamment pour certains doutes concernant leur survivabilité au combat); elles comptent plusieurs variantes (chasse de mines, lutte anti-sous-marine, module amphibie, traitement des menaces de surface). Elles sont conçues pour intervenir au sein d’une force constituée de plusieurs LCS mais aussi de navires plus puissants (destroyers) pour assurer leur protection, et d’une bulle de renseignement (AWACS, drones, surveillance satellitaire). Tout ceci pour dire que le concept de Littoral Combat Ship est en réalité indissociable du concept de guerre infocentrée (NCW ou Network Centric Warfare). Les frégates LCS n’interviennent donc jamais seules en opérations.

lcs5

Ce concept de guerre infocentrée se nomme (dans l’US Navy) le Naval Fires Network et repose sur le système baptisé Cooperative Engagement Capability, (CEC) un réseau de capteurs et d’effecteurs permettant la fusion de données de capteurs, le contrôle des feux, la tenue d’une situation tactique partagée en temps réel. Du classique donc, sauf que l’US Navy compte y ajouter… de l’intelligence artificielle !

Pour être plus précis, l’US Navy a investi 2,5 milliards de dollars (oui, oui, milliards) pour développer un système appelé CANES (encore désolé pour les acronymes) pour Consolidated Afloat Networks and Enterprise Services ; un gros, un réseau de combat pour les navires de surface, dans le cadre du CEC. Ce réseau (dont plus de 50 systèmes sont aujourd’hui déjà opérationnels) doit être durci pour répondre aux impératifs de sécurité (protection contre les cyberattaques et communications sécurisées avec les terminaux durcis embarqués). Et c’est dans ce cadre que l’IA (Intelligence Artificielle) fait son apparition : il s’agit de pouvoir augmenter le niveau d’automatisation de CANES pour répondre aux différentes menaces.

lcs2

L’US Navy, pour expliquer sa problématique, prend l’exemple du porte-avion nucléaire de classe Nimitz USS Truman. Son réseau CANES comporte plus de 3400 réseaux locaux (LAN), correspondant à plus de 2700 localisations différentes à l’intérieur du navire. Dans une telle complexité, il devient difficile à des analystes humains d’identifier une tentative d’attaque ou d’intrusion dans l’un de ces points de vulnérabilité. Il s’agit donc d’utiliser l’intelligence artificielle pour réduire le nombre d’analystes humains requis, et d’optimiser l’efficacité de la détection et de la sécurité.

Jusque là, même si la difficulté est réelle, il s’agit d’une utilisation classique de l’IA. Mais le concept va plus loin puisque la marine américaine souhaite que l’IA suggère, en cas d’attaque, les contre-mesures appropriées, voire suggérer des cyberattaques offensives menées par l’IA contre ses adversaires. Et le système est supposé apprendre de l’ensemble des menaces déjà détectées et identifiées. Comme le réseau agrège de nombreuses ressources, il s’agit bien de faire de l’IA, et de constituer un système adaptatif, apprenant de tout ce qu’il observe, et capable de généraliser, c’est à dire de mettre en oeuvre des stratégies fondées sur ce qu’il a appris. Big data, donc, mais pas seulement!

Mais cette introduction de l’IA dans le réseau va au-delà des préoccupations seules de cybersécurité : il s’agit également de pouvoir réaliser une analyse des données senseurs par exemple à des fins de maintenance prédictive des différents équipements. L’IA permet alors d’identifier les défaillances ou dérives avant qu’elles ne deviennent critiques : c’est par exemple le système ADEPT Distance Support Sensor Suite (ADSSS) que la société Mikros a récemment installé sur la frégate LCS USS Independence. Du point de vue de la cybersécurité, il s’agit également d’utiliser l’IA pour optimiser le déploiement de mises à jour ou de patchs de sécurité au sein du système CANES.

lcs4

Au-delà, l’US Navy souhaite intégrer l’IA dans le contexte d’une aide tactique, et cela aussi, c’est nouveau. Il ne s’agit de pouvoir procéder à une analyse consolidée des données agrégées au niveau de la plate-forme LCS : imagerie, données SONAR, drones de type FireScout (ci-dessus), mais aussi d’utiliser l’IA pour aider à la coordination des feux dans une optique de protection collaborative.

Pas d’indication en revanche (et on le comprend) sur la nature des systèmes d’IA ou même leur famille. Si, dans le domaine cyber, les programmes sont déjà bien identifiés et sans doute facilement transposables dans le contexte du LCS, dans le domaine opérationnel tactique, aucune information ne filtre pour le moment. Mais nous resterons aux aguets.

Bonne année à vous tous – ce blog reprend son cours et vous souhaite en l’occurrence bon vent et bonne mer!

corti6

La vision artificielle a fait des progrès considérables dans ces dernières années, avec certes le développement de nouveaux capteurs, mais aussi en raison de l’apparition à la fois de processeurs spécialisés adaptés spécifiquement à cette problématique, et de nouveaux algorithmes, capables de fonctionner en temps réel, ce qui était inconcevable il y a quelques années. Dans ce domaine, de nombreuses sociétés apparaissent, mais celle-ci semble développer une approche originale, et que je pense assez adaptée (je vous dirai pourquoi).

corti1

Cortica est une société israélienne, issue du célèbre Technion, l’équivalent israélien du MIT. La société a été fondée en 2007 par trois chercheurs spécialisés dans l’informatique, l’ingénierie et les neurosciences, dont son dirigeant actuel, Igal Raichelgauz. Après avoir levé un financement d’environ 40M$, la société compte aujourd’hui une équipe conséquente de chercheurs en IA, mais également des experts militaires issus de la communauté israélienne du renseignement ( !) ce qui en dit long sur les applications visées.

L’approche de CORTICA est résolument inspirée par la biologie, et en particulier par le fonctionnement du cortex visuel primaire. Elle développe en effet une technologie d’apprentissage non supervisé (pour faire simple, je rappelle que l’apprentissage non supervisé a pour objectif de découvrir de la valeur dans des données qui ne sont pas structurées a priori, afin de réaliser une extraction de connaissances) afin de disposer d’une IA capable de comprendre l’image « comme un humain ».

corti2

En gros, l’IA cherche à identifier par elle-même des caractéristiques, des motifs (patterns), des relations entre différentes images, et ce de manière autonome, l’ambition étant – je cite – de constituer « un index universel visuel du monde ». Pour ce faire, la société a conçu une architecture d’apprentissage qui s’inspire du cortex visuel primaire des mammifères – peu de détails ont filtré, mais on peut imaginer en particulier qu’il s’agit de coder ce que l’on appelle des neurones à spikes – pour une description plus détaillée, je vous propose de relire cet article.

Cette architecture cherche à permettre un apprentissage non supervisé par observation, ce que l’on pourrait appeler de l’apprentissage prédictif (c’est le terme employé par Yann le Cun, chercheur en IA et directeur du laboratoire parisien d’IA de Facebook). En gros, au lieu de devoir constituer de grosses bases de données d’images « labellisées », donc traitées au préalable afin d’expliquer au système ce qu’il est supposé reconnaître, on présente à l’IA des images, et – comme un nouveau-né qui commence à observer le monde – elle apprend progressivement le sens et les relations entre ces différentes images présentées. Si je crois particulièrement à cette approche et surtout à l’inspiration biologique du cortex visuel primaire, c’est parce que dans ma – de plus en plus lointaine – jeunesse, j’ai travaillé au sein du groupe de bioinformatique de l’Ecole Normale Supérieure sur le sujet de l’apprentissage et de la vision active, inspirée de la modélisation des colonnes corticales du cortex visuel primaire, et que les résultats préliminaires, alors limités par la puissance de calcul dont nous disposions à l’époque, étaient déjà encourageants.

corti3

Cortica vise à déployer sa technologie en l’embarquant dans différents systèmes, qu’il s’agisse de véhicules autonomes, de systèmes automatiques d’analyse d’imagerie médicale, ou d’applications grand public. Mais on voit immédiatement le potentiel d’une telle technologie dans le domaine de la défense et de la sécurité. Le ROIM (renseignement d’origine image) a besoin de telles technologies afin de pouvoir très rapidement générer des « points d’attention » sur des images (images satellites, caméras de surveillance…) et leur donner du sens.

corti5

Il s’agit donc d’une tendance de fond en IA, qui bénéficie directement à la Défense, et qui est d’ailleurs accompagnée par l’émergence de nouveaux moyens de calcul dédié. Google a présenté récemment son Tensor Processing Unit (ci-dessus, et voir ce lien) qui met en œuvre une accélération hardware des réseaux de type Deep Learning. Mais les réseaux de neurones à spikes – tels que ceux a priori mis en œuvre dans la technologie de Cortica – connaissent un développement important, également en France.

Nous avions parlé dans ce blog du projet AXONE (ci dessous) soutenu par la DGA. Simon Thorpe, le chercheur à l’origine de cette technologie, dirige le CERCO, Centre de recherche sur le cerveau et la cognition (Cerco) – rattaché au CNRS et à l’université Toulouse-III. Via la structure Toulouse Tech Transfer (TTT), il vient de céder une licence d’exploitation de sa technologie de reconnaissance à BrainChip, spécialiste des solutions de reconnaissance pour la surveillance civile et qui avait racheté en septembre la société Spikenet Technology.

corti4

BrainChip utilisera cette technologie en vue d’optimiser son microprocesseur Snap, qui analyse en temps réel des flux vidéo. La tendance de fond semble donc se confirmer, avec de nouveaux acteurs en parallèle des Google, Facebook et autres géants, et avec des applications potentiellement considérables dans le domaine de la Défense et de la Sécurité. En attendant leur portage sur de futurs processeurs neuromorphiques, mais c’est une autre histoire.

Pour faire écho à mon récent billet d’humeur, on voit donc que les technologies d’IA commencent à atteindre un degré de maturité considérable, et suscitent un intérêt certain dans nombre de pays compte tenu des enjeux sous-jacents. A la France de maintenir et d’amplifier l’avance qu’elle possède dans le domaine.

Image1

Dans le contexte actuel de transformation profonde de l’Etat, et au moment où la nouvelle ministre des armées prend ses fonctions, je me permets un petit billet d’humeur sur le sujet de l’innovation technologique de défense, avec en toile de fond l’exemple – non limitatif – de l’intelligence artificielle.

Rappelons tout d’abord que la France a des atouts incontestables dans le domaine de l’innovation. C’est une nation majeure des mathématiques avec 13 médailles Fields décernées à des chercheurs français, elle possède une DGA, une particularité française, composée d’ingénieurs spécialisés dans les domaines de la défense et de l’armement. Elle siège au conseil de sécurité des Nations-Unies et possède une dissuasion nucléaire crédible. Malgré sa taille en regard de nos amis américains, russes ou chinois, la France tient son rang dans le domaine spatial (qui est loin d’être un sport de masse comme l’a montré l’échec du programme spatial brésilien), elle possède le second domaine maritime mondial, elle compte un écosystème dense de start-ups, de PME et de champions industriels, bref, nous ne sommes pas ridicules.

FieldsMedalBack

Mais aujourd’hui, l’innovation de défense est faite de ruptures (les nanotechnologies, la fabrication additive, l’internet des objets, …), de convergences, mais aussi de « game changers », d’innovations tellement critiques qu’elles conféreront aux pays qui les détiendront un avantage stratégique majeur. Et il est absolument indispensable de ne pas faire l’impasse sur ces « game changers », comme nous avons pu le faire dans le passé. L’exemple le plus illustratif, c’est le retard du programme français dans le domaine des drones (je ne commenterai pas).

Prenons l’exemple de l’intelligence artificielle qui est particulièrement illustratif. En soi, l’IA n’est pas un domaine nouveau. Les théories à l’origine de l’essor du « Deep Learning » (apprentissage profond automatique permettant à un ordinateur de faire de la reconnaissance vocale, de la reconnaissance faciale, la vision par ordinateur etc…) étaient connues depuis les années 50 (avec des progrès conséquents dans les années 80). Mais ce qui explique la progression exponentielle du domaine aujourd’hui, c’est la convergence entre des capacités de calcul sans commune mesure avec celles de la dernière décennie, une variété de techniques algorithmiques parfaitement explorées et identifiées, des capacités d’ingénierie abouties et une masse de données produites chaque jour permettant un réel essor de l’apprentissage machine. Une convergence permettant aujourd’hui un « big bang » incontestable du domaine.

bigbang

Or l’IA devient aujourd’hui un sujet stratégique. Aux Etats-Unis, c’est la notion de « third offset strategy» qui met l’accent sur les développements de l’Intelligence artificielle et les ruptures technologiques résultante (autonomisation des drones, robotique en essaim, …)

l’IA est ainsi devenue un outil de sauvegarde de la défense et de la souveraineté, de nature à générer une véritable rupture stratégique. Les avancées militaires liées à ce domaine ont été amplement discutées dans ce blog : capteurs abandonnés intelligents, plates-formes de renseignement, robotique autonome, simulation, etc…  Le document « Chocs Futurs » du SGDSN cite explicitement le sujet: « Le système de combat collaboratif, comprenant des composantes pilotées comme des composantes autonomes, bénéficiera d’une capacité d’analyse et d’un délai de réaction sans commune mesure avec un ensemble de systèmes pilotés par des humains. De ce fait, les armées qui disposeront de ces capacités bénéficieront des effets d’une rupture majeure dans l’équilibre des forces. »

aiautonomy

Il est donc absolument indispensable, de tenir notre rang dans ce domaine, et d’anticiper la généralisation de l’IA dans les systèmes militaires. Faute de quoi, entre les acteurs transnationaux comme les GAFA (Google Amazon Facebook Apple… mais la liste est bien plus longue) et les pays investissant massivement sur ces technologies, le risque pour la France est de perdre non seulement des parts de marché liées aux technologies du futur mais aussi des pans de son autonomie d’appréciation et d’action en Défense et Sécurité.

En matière d’IA, la France bénéficie de quelques atouts notables comme je l’ai mentionné en introduction. Son système de financement de la recherche et l’excellence des laboratoires de recherche appliquée, notamment en sciences mathématiques et informatiques en font un creuset reconnu d’experts de niveau mondial. Ce n’est d’ailleurs pas un hasard si l’un des laboratoires les plus en pointe dans le domaine, celui de Facebook, est implanté à Paris et dirigé par un Français, Yann le Cun.

Le domaine est également tiré par l’essor de l’Internet des Objets, un secteur dans lequel la France est en pointe (comme l’a montré le succès de la présence française FrenchTech au CES de Las Vegas).

CES

Pour que la France puisse développer et conserver son avantage, il faut trouver les moyens d’accélérer la transition entre la recherche académique, encore principalement financée par l’Etat, et l’industrie. Car aujourd’hui, ce sont parfois d’autres acteurs qui puisent dans le réservoir français de compétences issu des investissements étatiques et n’hésitent pas à investir pour financer la continuité du processus de maturation.

Soutenir, accompagner, investir dans la recherche sur l’IA, c’est pouvoir continuer à disposer d’une base industrielle et technologique de défense performante, à la fois pour garantir notre sécurité intérieure, prévenir toute surprise stratégique, mais également pour rester un pays influent dans le monde.

Pourquoi ce billet ? Parce que pour l’instant, même si la DGA lance un programme ambitieux sur le domaine, j’ai un sérieux doute sur la pérennisation des budgets de recherche et d’innovation, à l’heure où 2,7 milliards sont encore gelés. Le risque serait – par exemple pour le domaine de l’IA – de ne vouloir compter que sur le monde civil pour développer cette capacité, qui serait ensuite « adaptée » par les gentils industriels en autofinancement. A cela, deux commentaires.

En premier lieu, les technologies les plus « différenciantes » ont tendance… à être rachetées. A titre d’exemple, voici un graphique qui montre toutes les acquisitions récentes dans le domaine de l’IA par des grands acteurs transnationaux. Autant de technologies « perdues » ou diluées pour le monde de la défense.

ttimeline

Ensuite, la transposition ne peut être simple et directe. Tout n’est pas dual, et c’est bien le rôle des industriels de défense de travailler avec les start-ups, avec les laboratoires, avec la DGA, avec les Forces, pour pouvoir développer une technologie adaptée aux défis capacitaires actuels. Ne faisons pas l’erreur de croire que le monde civil va résoudre les problèmes des militaires: il faut maintenir un effort d’étude, de recherche industrielle, financée par la Défense afin de s’assurer d’aller assez vite, et surtout dans les bonnes directions.

imgp

Ne désarmons donc pas, ni dans ce domaine, ni dans d’autres domaines stratégiques comme les armes à énergie dirigée, le calcul et la cryptographie quantique, ou encore l’hypervélocité. Il en va de notre autonomie stratégique, de notre rang dans le monde, mais aussi du maintien de notre base industrielle. La recherche de défense doit être préservée, pour le succès des armes de la France.