Articles Tagués ‘lentille’

lens5

Bon, ce n’est pas pour tout de suite, mais puisqu’on peut faire de temps en temps de la prospective à plus de 30 ans, je m’attarde un instant sur cette invention digne des meilleurs films de science-fiction. Nous la devons à la société BAE, qui travaille sur un projet baptisé LDAL pour « Laser Developed Atmospheric Lens », ce qu’on pourrait traduire par lentille atmosphérique créée par focalisation laser.

Cette invention vise à ioniser l’atmosphère au moyen d’une impulsion laser afin de créer un « bouclier » permettant de protéger le sol contre les effets d’une arme laser à énergie dirigée, d’utiliser cette « lentille » pour de l’espionnage ou de la reconnaissance, ou encore de constituer un mirage optique pour leurrer l’adversaire. Délire d’un ingénieur fana de science-fiction ? Non, c’est sérieux.

lens1

Le concept repose sur un effet physique dit Effet Kerr. Pour faire simple, voire simpliste pour les puristes, le laser à impulsion braqué sur l’atmosphère ionise l’air; à haute puissance, l’indice de réfraction de l’air dépend de l’intensité laser incidente (il y a même une formule, mais je ne veux pas dégoûter les lecteurs). Le profil d’intensité dans le faisceau laser n’étant pas uniforme, l’effet Kerr génère un profil d’indice de réfraction qui se comporte comme une lentille convergente ou « lentille de Kerr » dont la distance focale dépend de l’intensité.

On va faire simple : une fois ionisée, la portion de l’atmosphère concernée est transformée temporairement en une structure proche d’une lentille, permettant soit d’amplifier, soit de dévier le trajet des ondes électromagnétiques (ondes lumineuses, mais aussi ondes radio). Le phénomène est évidemment réversible. C’est un peu ce que l’on voit dans le cas d’un mirage, où l’air chaud qui monte réfracte la lumière et permet de dévier le trajet des rayons lumineux.

lens2

L’idée de BAE, c’est d’utiliser ce phénomène afin de protéger les troupes au sol, les véhicules, navires ou même aéronefs d’une attaque par l’emploi d’une arme à énergie dirigée (laser à haute énergie par exemple). Ou de déclencher un laser à impulsion en haute altitude, et provoquer la création d’une lentille permettant d’observer les mouvements ennemis en amplifiant la lumière venant de la zone située en-dessous de la lentille. La vidéo ci-après présente le projet.

Et les concepteurs ne sont pas des doux rêveurs puisqu’ils travaillent avec le Science and Technology Facilities Council britannique, le laboratoire Rutherford Appleton et la société LumOptica.

Evidemment, ce n’est pas pour demain : un tel système, dans sa pleine capacité opérationnelle, est envisageable dans un délai d’une cinquantaine d’années. Mais nul doute que ce développement pourra être accéléré si les armes à énergie dirigée se démocratisent au point de devenir une menace réelle et prégnante. Ou si quelqu’un s’avise de construire l’Etoile Noire (ou blonde, sic), on ne sait jamais…

gra4

Ou plus exactement, par l’utilisation de MEMS à base de graphène ; une phrase qui nécessite quelques explications. En premier lieu, qu’est-ce que le graphène ? Il s’agit de cristal de carbone pur bidimensionnel (en gros une monocouche de carbone) obtenu soit directement à partir du graphite, en le « pelant » pour séparer les couches, soit par synthèse, par exemple en faisant chauffer à plus de 1000 degrés un catalyseur sur lequel un gaz d’hydrocarbure va se dissocier et déposer des atomes de carbone.

Le graphène est un matériau conducteur qui possède de très nombreux intérêts (des processeurs à base de graphène devraient d’ailleurs bientôt voir le jour) – parmi ceux-ci, un coefficient Seebeck unique (décidément, cet article devient de moins en moins lisible). En gros, un pouvoir thermoélectrique remarquable : un senseur à base de graphène est sensible à la totalité du spectre infrarouge.

gra1

Des chercheurs du MIT ont donc annoncé avoir combiné un capteur thermoélectrique à base de graphène avec un MEMS (micro système électromécanique) composé d’une membrane de nitrure de silicium. Le résultat : un capteur capable de détecter les températures du corps humain, dans une pièce à température normale (pour les connaisseurs du domaine, on obtient des réponses de 7 à 9 V/W, pour une longueur d’onde de 10.6 microns et une constante de temps de 23ms). Bon, je ne rentre vraiment pas dans une explication exhaustive: vous trouverez (en payant), l’article ici.

gra2

Il s’agit d’une innovation qui devrait révolutionner le domaine de la vision thermique. Car jusqu’ici, pour détecter des signatures thermiques à température normale, les senseurs devaient être refroidis par cryogénie, afin de supprimer le bruit de fond du aux radiations thermiques de la pièce.

Les capteurs étaient donc chers et volumineux, afin d’intégrer les composants nécessaires pour le refroidissement. Avec cette nouvelle technologie, sans rentrer dans les détails, il devient possible de développer un système de vision thermique très compact, voire flexible et transparent. De là à imaginer des «lunettes thermiques » ou même des « lentilles thermiques », il n’y a qu’un pas. Un pas d’ailleurs déjà franchis par une équipe de recherche de l’université du Michigan qui, il y a un an, avait présenté un prototype d’une lentille de contact infrarouge, toutefois moins sensible ‘voir photo ci-dessous) que le détecteur construit par le MIT. Cette sensibilité était le seul vrai obstacle au développement de lentilles thermiques. Le MIT annonce travailler maintenant sur un senseur fondé sur une seule couche de graphène.

gra3

Maintenant que la faisabilité est avérée, nul doute que dans le futur proche, des nouveaux senseurs infrarouges portables et haute définition verront le jour, et ce pour un coût raisonnable. Entre les processeurs, les gilets pare-balle, les écrans et maintenant la vision thermique, le 21e siècle est bien l’ère du graphène.