hyperson1

DF-ZF pour les chinois, WU-14 pour le Pentagone américain : ce sont les petits noms du nouveau planeur hypersonique chinois, capable de voyager entre Mach-5 et Mach-10. Pour être précis, il s’agit d’une charge militaire hypersonique, lancée à partir d’un missile balistique, ce que l’on appelle en anglais « high-speed maneuvering warhead » ou « hypersonic glider », et capable de percer tout système d’interception.

Pour être tout à fait concret, cela représente des vitesses de l’ordre de 10 000 km/h, même si la notion de véhicule hypersonique doit être modulée et précisée en tenant compte de l’altitude de l’engin (dans la haute atmosphère). Mais l’idée est d’être en position de frapper n’importe quelle cible sur la surface de la Terre en moins d’une heure. Ou de neutraliser un satellite en orbite basse.

Le missile propulsant le système DF-ZF a été tiré la semaine dernière à partir de la base de lancement de Wuzhai, en Chine centrale. Officiellement, il s’agit d’un tir d’essai « pour une mission scientifique » (!), qui fait d’ailleurs suite à un tir russe (le 22 avril dernier) d’essai d’un véhicule hypersonique analogue, à la frontière du Kazakhstan.

Le film ci-dessous illustre bien le concept.

Cette charge hypersonique est compatible avec plusieurs types de missiles balistiques chinois, comme le DF21 (moyenne portée) ou DF31 (ICBM ou missile balistique intercontinental). Le principe est de permettre au missile de lâcher le véhicule dans la stratosphère. Celui-ci retombe alors dans l’atmosphère, et voyage à haute vitesse. Bien que générant une trainée importante, cette solution permet de « planer » plus longtemps que si le véhicule était relâché dans l’espace, tout en minimisant le risque d’interception. En l’espèce, neutraliser un tel engin nécessiterait une arme à énergie dirigée (laser ou « railgun »). Bien que la trajectoire soit prévisible au début (car balistique), c’est donc bien la vitesse qui permet de percer les défenses ennemies. De plus, la trajectoire du DF-ZF est dite « up and down » : le véhicule est lâché, entre dans l’atmosphère, puis se rétablit et remonte avant de contrôler son altitude et sa vitesse, et de planer vers sa cible. Cette trajectoire semble erratique, et est très difficile à anticiper pour un système de défense.

La DARPA cherche également à développer un tel programme, et l’US Air Force anticipe une mise en service vers 2020 (notamment sur la base du X51 Waverider, ci-dessous).

hyperson2

Comme le DF-ZF, le principe est également de « surfer » sur l’onde de choc créée par le véhicule lui-même (et créant une portance dite de compression). Cependant, à la différence du système chinois, le X51 repose sur une propulsion de type statoréacteur, sans aucune pièce mobile, mais qui est lancé à partir d’un bombardier B52. Le tableau ci-après présente les différents concepts.

hyperson5

Les russes ne sont pas en reste, avec notamment leur missile Zircon (ci-dessous) à base de combustible liquide, et capable de voler à 6000 km/h et tiré à partir d’un sous-marin de cinquième génération (classe Husky).

hyperson3

Il s’agit donc bien d’une course à l’hypervélocité. Au-delà de se doter de capacités de frappe nucléaire hypervéloce (comme le suggèrent de nombreux article un peu trop racoleurs sur Internet), la Chine cherche surtout à pouvoir montrer (et prouver) ses capacités à percer une défense antimissile régionale, comme le pensent les chercheurs de la Potomac Foundation.

hyperson4

La carte ci-dessus montre bien les enjeux dans la maîtrise de la région. Une arme hypersonique pourrait jouer un rôle soit dissuasif, soit offensif dans des zones comme Taiwan, ou la mer de Chine méridionale. A suivre, donc.

 

ai2

L’idée n’est pas nouvelle. Dans une ancienne vie, j’avais moi-même travaillé sur l’utilisation de réseaux de neurones et de techniques d’intelligence artificielle pour la modélisation du comportement normal d’un réseau de télécommunications, afin de détecter les écarts à la normale, pouvant signifier l’occurrence d’une intrusion. Le projet s’appelait M>Detect et avait été réalisé avec Matranet (pour les nostalgiques). Et cela fonctionnait… jusqu’au rachat de Matranet, mais ceci est une autre histoire.

Aujourd’hui, le monde entier s’enthousiasme pour l’intelligence artificielle (IA) – au passage, cet enthousiasme galopant est consécutif à la définition d’un concept marketing alliant réseaux de neurones et puissance de calcul, sous la dénomination de « deep learning ». Bref. En l’occurrence, il s’agit d’un projet du célèbre laboratoire CSAIL (Computer Science and Artificial Intelligence Laboratory) du MIT (Massachussetts Institute of Technology), qui a développé un système baptisé AI2 afin d’examiner les enregistrements (logs) d’un réseau afin d’y détecter toute anomalie pouvant être caractéristique d’une cyberattaque.

L’idée est toujours la même : permettre aux experts de réaliser un tri dans le volume gigantesque de données transitant par le réseau, sans avoir de silence (i.e. manquer une attaque).

Finalement, la technique est relativement classique : enseigner à un système la signature caractéristique de prémices d’une attaque comme par exemple une augmentation subite de connexions sur un compte utilisateurs, pouvant indiquer une attaque visant, par la force brute, à « cracker » un mot de passe.

ai3

AI2 fonctionne par apprentissage. Le premier jour, le système utilise des règles et heuristiques déterminées à l’avance, et réagit en identifiant des anomalies (les 200 anomalies les plus caractéristiques par phase d’apprentissage). Ces anomalies sont présentées à un expert ou à un groupe d’expert qui n’indique que les signatures correspondant véritablement à des attaques. Puis le système apprend, et continue à présenter les signaux aux experts, et ainsi de suite. La vidéo ci-dessous présente le concept.

Rien de nouveau sinon que AI2 semble fonctionner là où d’autres systèmes plafonnent péniblement. Sans doute de par l’impressionnante puissance de calcul disponible aujourd’hui, après 3 mois d’analyse (soit 3.6 milliards de logs réseaux analysés), AI2 identifiait 85% des signes caractéristiques d’attaques (alors qu’un simple apprentissage non supervisé n’atteint qu’un taux de succès de 8%). AI2 est le premier système à atteindre un tel niveau de performances, sans doute par l’apprentissage non supervisé de signaux caractéristiques dans les logs réseaux, et un apprentissage supervisé utilisant les retours des experts.  Au lieu d’examiner plusieurs milliers de logs par jour, une fois le système « éduqué », chaque expert ne doit plus examiner qu’entre 30 et 40 événements par jour : une tâche réalisable sans problème par un opérateur humain.

Le laboratoire a présenté un article lors du  IEEE International Conference on Big Data Security à New York. Un travail à suivre, notamment afin de déterminer si, en miroir à cette technique, il serait possible de dériver un système capable d’imaginer des stratégies de réponse, voire d’attaque.

cormo4

Non, je n’ai rien consommé de différent, ni fumé, ni bu (ou alors peu). Acceptons-le : quand les militaires financent de la recherche sur les matériaux, l’objectif peut souvent être assez décoiffant (on se souvient par exemple de la peau anti-radar, ou des systèmes de camouflage par revêtement électronique).  En l’occurrence, l’US Air Force a du s’inspirer du film « Terminator 2 » pour imaginer ce projet de recherche de l’Université de Cornell, et le financer.

Il s’agit en effet de pouvoir développer un nouveau matériau hybride à base de métal, et capable de changer de forme. L’objectif est assumé : faire de la « soft robotics », donc concevoir des robots ou drones dont certaines parties peuvent changer de forme nativement, sans pièces articulées.  Par exemple un robot cormoran, cet oiseau capable de voler, et de plonger dans l’eau pour pratiquer la chasse sous-marine.

cormo1

L’idée est de développer des ailes déformables, capables d’endurer le choc de la percussion avec l’eau mais de se déformer ensuite pour permettre la progression sous-marine. Une ambition irréaliste si la science des matériaux ne venait pas à la rescousse.

En l’occurrence, les chercheurs de Cornell ont développé un matériau hybride de nouvelle génération, alliage de métal et de silicone, donc possédant à la fois la solidité du métal, et l’élasticité lui permettant de changer de forme. Ce matériau est obtenu en plongeant une mousse de silicone dans du métal fondu. Ce mélange est ensuite placé sous vide, ce qui permet d’expulser l’air des alvéoles de la mousse, et de le remplacer par le métal liquide.

cormo2

Le résultat ? Un matériau hybride et déformable – décrit dans l’article écrit dans la très sérieuse revue « Advanced Materials » par le Pr Rob Shepherd, et possédant les propriétés recherchées des deux matériaux qui le composent. Pour passer d’une forme à une autre, il suffit de le chauffer à 63 degrés. D’ailleurs, il est capable de chauffer spontanément lorsqu’il est endommagé, ce qui laisse envisager des capacités d’autoréparation, par mémoire de forme. Regardez la vidéo impressionnante ci-dessous.

Les pores de la mousse mesurent 2mm, mais cette taille peut être adaptée, pour varier les propriétés de solidité et d’élasticité du composant.

Au-delà de la vision quelque peu étonnante du drone cormoran, un tel matériau est biocompatible – en particulier il ne comporte pas de plomb – ce qui permet d’envisager des applications dans le domaine biomédical.

mine2

C’est l’idée originale de chercheurs de l’université de Bristol, incités par la fondation « Find A Better Way » à trouver une solution pour se débarrasser des quelques 110 millions de mines enterrée de par le monde. Soit en théorie environ un millier d’années de travail de détection et de neutralisation, et quelques centaines de milliards d’euros à investir…

Pour à la fois accélérer le processus, et surtout l’effectuer en diminuant le risque pour les démineurs, ces chercheurs ont eu l’idée de coupler un imageur hyperspectral avec un drone, afin de détecter des indices de présence de mines enterrées.

mine1

Une première étape consiste donc à capturer des images haute résolution du terrain ciblé, permettant de guider les démineurs vers les zones minées les plus probables (en utilisant leur expertise en fonction des reliefs et des points typiques du terrain). De telles images haute résolution prises en hauteur sont aujourd’hui souvent inaccessibles car nécessitant un survol particulier d’un avion ou d’un hélicoptère équipé. Le drone permet, à peu de frais, de disposer de telles cartes.

Mais l’idée originale, c’est d’utiliser l’imagerie hyperspectrale pour observer à différentes longueurs d’onde… la couverture végétale afin de détecter la présence d’engins explosifs.  Car une mine enterrée a tendance à fuir, à relâcher des composants chimiques dans le terrain, qui modifient le feuillage des plantes ou génèrent des anomalies de croissance. Ces différences subtiles dans la couleur ou la forme du feuillage peuvent donner des indications supplémentaires sur la probabilité de présence d’une mine enterrée.

Dans l’infrarouge proche, chaque plante a une signature caractéristique, d’ailleurs utilisée par certains agriculteurs pour déterminer son état de santé. C’est le même principe qui s’applique ici : la modification de l’état de la plante par rapport à ses semblables, engendrée par la présence d’une mine, est détectable par imagerie hyperspectrale.  Enfin, l’imagerie infrarouge permet de détecter des objets artificiels camouflés sur le terrain qui ne seraient pas détectables en lumière visible.

mine3

Cette approche a donc l’avantage d’aborder le problème de la détection par un angle original, tout en utilisant des drones du commerce, donc peu onéreux et accessibles aux organisations des pays – souvent peu favorisés – confrontés à ce problème. Le projet de recherche devrait durer deux ans ; il a débuté par une démonstration de faisabilité : les chercheurs ont ainsi montré qu’il était possible de capturer des images haute résolution du terrain de football de Manchester United en moins de 2h pour obtenir une carte utilisable par des équipes de déminage. Evidemment, l’approche est moins adaptée aux zones désertiques, mais plusieurs alternatives existent et feront l’objet d’un autre article.

actuv1

Un avion ? Un oiseau ? Un insecte ? Il faut dire que le nouveau bâtiment construit par la DARPA, et baptisé « Sea Hunter » la semaine dernière à Portland, intrigue. Il s’agit en fait du résultat du projet de conception d’une plate-forme robotisée anti-sous-marine « Anti-Submarine Warfare Continuous Trail Unmanned Vessel » ou ACTUV.

actuv3

L’idée consiste à développer un drone chasseur de sous-marin, capable d’opérer dans une zone littorale donnée en toute autonomie. Construit par LEIDOS (ex société SAIC), le Sea Hunter est un engin capable de détecter un sous-marin diesel, de foncer sur sa cible avec une vitesse de pointe de 27 nœuds (50 km/h environ) pour identifier et reconnaître le submersible. L’engin n’est pas armé : l’objectif est de traquer et débusquer les sous-marins suspects, et de passer, le cas échéant, le relais à d’autres intercepteurs qui restent en contact avec le Sea Hunter par liaison satellitaire.

actuv2

Pour ce faire, le Sea Hunter est équipé de deux pods sonars actifs/passifs à moyenne fréquence capables de délimiter la zone de recherche. Une fois celle-ci identifiée, ce sont deux sonars haute fréquence situés sur la coque qui prennent le relais pour affiner la détection, puis enfin un réseau de magnétomètres et un sonar final de très haute fréquence permettent de déterminer la signature acoustique de la cible.

actuv4

Mais ce qui est impressionnant, c’est que malgré son apparence de trimaran High-Tech, rien n’est prévu pour accueillir la moindre présence humaine à bord :  des coursives très étroites ne servant que pour la maintenance, pas de quartiers pour un équipage, et même les rares panneaux de contrôle prévus sur le pont ne sont là que pour permettre, le temps des tests à la mer, aux ingénieurs de monter à bord. Le navire de 40m de long ne fait que 3,5m de large : c’est un robot flottant. Mais il y a quand même une climatisation à bord. Pas pour des marins : pour refroidir les serveurs C4N qui constituent le « cerveau » du Sea Hunter.

actuv5

Et ce cerveau ne se limite pas à la chasse : même en cas de perte de contact, et à partir des données radar et images (il est muni de caméras) le Sea Hunter est capable de poursuivre en toute autonomie sa mission, en respectant les règles de navigations COLREGS anti-collision (International Regulations for Preventing Collisions at Sea) et ce de manière adaptative. En gros, s’il croise un autre navire, il est capable, en fonction des caractéristiques identifiées de ce dernier et selon la régulation, d’estimer qui doit céder le passage (évidemment, en dernier recours, un système anti-collision prend le relais automatiquement).

Capable de se maintenir par force 7, le Sea Hunter pèse un peu plus de 100 tonnes et peut patrouiller jusqu’à 9000 milles nautiques à une vitesse de 15 nœuds. Le Sea Hunter est conçu pour chasser en meute : plusieurs robots peuvent ainsi patrouiller une même zone de manière collaborative.

Pour un coût de construction de 20 millions de $ et un coût d’opération d’environ 20 000$ par jour, il s’agit donc d’une arme impressionnante et performante, qui vient donc d’effectuer ses premiers essais à la mer. Et plus qu’un insecte ou un navire, le ministre délégué de la Défense américain Robert Work compare cet engin (je n’invente rien) à un « oiseau de proie Klingon ».

peau3

Il est évident que dans les applications militaires de la robotique de théâtre, la discrétion du robot joue un rôle essentiel. Au-delà du bruit (rédhibitoire aujourd’hui pour certains prototypes comme je le mentionnais dans cet article), il y a également l’apparence visuelle. Des chercheurs de l’université de Cornell aux Etats-Unis et de l’Institut italien de Pontedera viennent de publier une innovation dans le journal Science, réalisée grâce, en partie, à un financement conjoint de l’US Air Force et de l’US Army. Il s’agit d’une « peau extensible électroluminescente » inspirée par la peau des céphalopodes.

En effet, on connait depuis longtemps les capacités impressionnantes du poulpe ou de la seiche en termes de mimétisme : les céphalopodes ont la faculté de changer leur coloration afin d’imiter le terrain pour échapper à leurs prédateurs (ce que l’on appelle l’homochromie). Cette habileté à changer efficacement de couleur de tégument repose sur deux capacités : la capacité visuelle à analyser très rapidement leur environnement (donc à percevoir de très faibles variations d’intensité lumineuse et de nuances), et la présence de chromatophores, organes spécialisés neuromusculaires, contenant des pigments dont ils gèrent la répartition. Le résultat est plus qu’impressionnant (voir ci-dessous) :

Les chercheurs se sont donc inspirés de cette capacité pour développer une « peau électronique » capable de changer de couleur et de sentir les variations de pression. Pour ce faire, ils ont conçu un système de sandwich : gel en silicone à l’extérieur, emprisonnant deux électrodes extensibles et transparentes, et une couche de phosphore électroluminescent capable d’émettre une lumière colorée. La couleur dépend des additifs ajoutés au phosphore : du cuivre pour une lumière bleue, du magnésium pour le jaune, par exemple.

peau1

En variant le nombre, la direction, la couleur et la superposition de ces « chromatophores artificiels », il devient possible d’émettre une lumière composée, et des motifs permettant de s’adapter à l’environnement. Comme la peau est extensible et déformable, le procédé semble effectivement prometteur.

L’idée est de développer des « robots souples » capables de changer d’apparence en cohérence avec leur environnement. D’autres chercheurs s’y étaient employés avec des succès plus… discutables (et notamment pour une fois, la DARPA et son concept de « peau liquide » développée avec Harvard University dans laquelle des colorants sont injectés pour en modifier la couleur. Bof.

peau2

La vidéo ci-dessous montre le process. Amusant, mais on en voit tout de suite les limites.

Outre le camouflage, on peut imaginer qu’un revêtement comme celui développé par Cornell, appliqué sur un robot militaire puisse permettre d’afficher, le cas échéant, des marqueurs permettant de l’identifier, voire de forcer la visualisation de son statut. Un robot de garde deviendrait d’un rouge agressif après détection d’un intrus, ce qui aurait un rôle potentiellement dissuasif. Il pourrait également changer de couleur lorsqu’il est touché, la peau étant capable de détecter la pression. Un bon exemple de biomimétisme, avec évidemment tous les fantasmes qui vont avec…

W-Band-Radar Demonstrator

Décidément, les radars qui tiennent dans la main ont la cote (voir mon article sur la puce développée à NTU). Des chercheurs de l’Institut Fraunhofer viennent en effet d’annoncer avoir développé un radar à haute fréquence capable de scanner son environnement sur 360°, et qui est suffisamment compact pour tenir dans la main.

Il s’agit en fait d’un capteur millimétrique, opérant à une fréquence de 94 GHz dans une bande de 15 GHz (bande W). Ces ondes millimétriques (la longueur est en effet comprise entre 1mm et 10mm), à la différence des fréquences optiques, sont capables de traverser tout matériau diélectrique (isolant électrique, en clair). Parmi ces matériaux : le verre, le bois, le plastique… Cela signifie qu’un tel capteur voit à travers ces obstacles, comme à travers la pluie, la poussière ou le brouillard. On imagine évidemment les applications militaires d’un tel dispositif.

Si l’on compare avec des systèmes identiques en service aujourd’hui, l’innovation est évidente : on passe d’un dispositif radar à base d’un substrat de céramique, et pesant plus de 5kg à une technologie de semiconducteurs à arséniure de gallium tenant dans l’équivalent d’une boite de cigarettes (pour être précis : 78 x 42 x 28 mm), et ne générant qu’une puissance de 10 milliwatts. Le composant critique en ce cas est le module haute-fréquence développé par l’Institut Fraunhofer.

radar4

Le système de scan repose également sur une antenne, possédant une lentille diélectrique et jouant le rôle d’émetteur et de récepteur. Elle comprend un miroir rotatif capable de guider les ondes millimétriques de manière à scanner l’ensemble du périmètre (ci-dessous). Bon, OK, j’ai un peu survendu : le scanner au complet mesure 20cm de diamètre (avec le paquet de cigarettes en question à sa base) et 70cm de haut. Il n’empêche qu’il s’agit d’un dispositif portable et léger, et ce grâce au module radar qui, lui, tient bien dans la main.

radar3

Un fantassin muni d’un tel dispositif pourrait détecter des objets à une distance de 3 km (cela dépend évidemment de leur taille), et ce sur 360° ! De la même manière, un drone muni d’un tel radar peut assurer ainsi une surveillance optimale de zone – au-delà de la détection, on peut également déterminer la direction de mouvement de la cible. Une nouvelle ère, donc, pour la détection d’objets ou de cibles sur un théâtre d’opérations.

xm0

Nous avons parlé à plusieurs reprises sur ce blog des armes légères intelligentes et des munitions adaptatives. Le XM25, lance-grenade intelligent construit par la société Orbital ATK, en est un bon exemple, et il sera bientôt en service. Nous en avions parlé déjà dans ce blog – cet article constitue donc une mise à jour.

Un rappel : il s’agit d’une arme individuelle munie d’un système d’acquisition de cible et de contrôle de l’ouverture du feu. Le système est fondé sur un télémètre laser, qui détermine la distance à la cible. Le tireur peut également ajuster cette distance en tenant compte d’obstacles comme un muret, ou un véhicule – en ce cas, le calculateur permet d’envoyer une grenade qui explose au-dessus de la cible, dans le principe d’une munition airburst. Au-delà de l’arme elle-même, le lance-grenade de 25mm est développé par Heckler & Koch et peut emmagasiner 25 munitions.

Ce n’est pas la première fois que l’on parle d’un tel principe, loin de là, mais cette fois-ci, cette arme parfaitement adaptée au combat urbain a subi les derniers tests avant sa mise en service effective. La portée utile de l’arme est finalement avérée à 500m (selon le constructeur) pour un impact direct, et jusqu’à 700m si une détonation type airburst est utilisée en effet de zone (HEAB pour High Explosive AirBurst). Plusieurs types de munitions sont en cours de développement, et notamment des versions à létalité réduite, ainsi que des munitions spécifiques pour détruire les portes et obstacles.

xm1

Outre cette arme, l’armée américaine – en l’occurrence le U.S. Army Armament Research, Development, and Engineering Center –  teste également une version 40mm appelée SAGM pour Small Arms Grenade Munition, fondée sur le même principe de détonation dans l’air, au-dessus de la cible.

xm2

Cette version est conçue pour être lancée à partir d’un lance-grenade M203 ou M320, même si le système de guidage doit encore être affiné. Dans le cas du XM25, la mise en service semble imminente – durant le développement du programme, des prototypes avaient été testés avec succès en Afghanistan.

xm4

Il a prouvé son efficacité, et notamment sa capacité à causer moins de dommages collatéraux afin de neutraliser des insurgés, en comparaison avec le recours à des tirs de mortiers ou des frappes aériennes. Un nouveau paradigme dans le cadre du combat urbain.

SIMOPS 2016

Publié: 30 mars 2016 dans Non classé

simops1

En raison de mon implication au sein du SIMOPS2016, je ne pourrai assurer cette semaine la rédaction d’articles. Ce blog reprendra donc dans le courant du week-end du 2 avril.

A très vite.

frend6

Les satellites géostationnaires civils et militaires posent aujourd’hui de nombreux problèmes quant à leur maintenance. A 36 000 km de la Terre, il est en effet impossible d’envoyer des missions de réparation ou de mise à jour de leurs composants ; ils sont donc aujourd’hui contraints d’embarquer de nombreux systèmes redondants pour pallier d’éventuelles défaillances, et du carburant afin d’ajuster, le cas échéant, leur position. Sans mentionner l’obsolescence de la charge utile, qui est vouée à rester dans l’espace jusqu’à la fin de la vie du satellite.

frend3

Plutôt que de multiplier les nouveaux satellites, la DARPA a lancé une nouvelle idée sous la forme d’un programme appelé Robotic Servicing of Geosynchronous Satellites (RSGS). Il consiste à développer d’ici 5 ans une approche fondée sur des technologies de robotique orbitale, afin d’aller au plus près des satellites géostationnaires afin de les inspecter, de les réparer ou de remplacer certains composants devenus obsolètes.

frend4

Le vecteur serait un RSV (robotic servicing vehicle), financé par l’industrie, alors que le lancement et le contrôle des missions seront assurés par les services de l’Etat.

L’approche repose sur un concept de bras robotisé développé par la DARPA, et baptisé FREND pour Front-end Robotics Enabling Near-term Demonstration (comme quoi la DGA – que je salue – n’a pas le monopole des acronymes complexes). Le bras a été conçu pour opérer sur des satellites non conçus à l’origine pour recevoir des opérations de maintenance.

frend2

 Il s’agit d’un projet développé depuis 2005, et, anecdote amusante, pour le tester, la DARPA a du développer une table à air pulsé de 4m par 6m en granit, afin de reproduire le comportement des objets flottants dans le vide (photo ci-dessous).

frend1

Le bras FREND sera amélioré, notamment d’un point de vue logiciel, en embarquant des senseurs supplémentaires, ainsi que des capacités logicielles de vision autonome pour faciliter les opérations d’appariement et de réparation. Le système met également en œuvre une simulation physique afin de générer des plans de réparation, testés au sol avant d’être transmis au RSV.

frend5

Le programme RSGS fera l’objet d’un appel à propositions dans les prochains mois. Cette approche de partenariat public/privé pourrait mener au lancement du premier RSV dans un horizon de 5 ans.