Articles Tagués ‘pirater’

sounic6

Ce qui est bien quand on tient un blog comme le mien avec la « Black Hat Conference », c’est qu’on est sûr que chaque édition apportera son lot d’innovations, pour nous convaincre que décidément, la sécurité informatique dans notre monde hyperconnecté, ce n’est pas de la tarte.

Rappelons que la Black Hat Conference est un événement annuel créé il y a maintenant vingt ans par Jeff Moss (également fondateur de la conférence DEFCON), et qui rassemble différents « briefings » sous forme de conférences à Las Vegas, Amsterdam, Tokyo et Washington (plus quelques autres événements). Le sujet est celui de la cybersécurité et vise à partager l’état de l’art sur le domaine, et les bonnes pratiques associées. Pour faire simple : c’est la messe annuelle des hackers !

sonic4

Cette fois-ci, l’innovation vient de l’équipe Alibaba Security, le département de sécurité informatique du groupe chinois Alibaba. En partenariat avec la prestigieuse université pékinoise de Tsinghua, l’équipe a présenté une conférence/démo intitulée « Sonic Gun to Smart Devices » et sous-titrée « comment vos appareils peuvent être contrôlés par des sons ou des ultrasons ».

sonic8

L’idée est de montrer que les systèmes embarqués dans une tablette, un smartphone ou un drone, tels que les gyroscopes, accéléromètres ou autres systèmes microélectromécaniques (ce que l’on appelle des MEMS) sont en fait sensibles aux sons ou aux ultrasons. Le principe est en fait simple : il consiste à trouver ce que l’on appelle la fréquence de résonance du système ciblé.

Prenons l’exemple d’un gyroscope ou d’un accéléromètre. Ces systèmes peuvent être comparés avec des systèmes « masses-ressorts » mais à l’échelle microscopique (ce sont souvent des accéléromètres soit capacitifs – ci-dessous, soit piézo-électriques).

sonic3

Ils possèdent une fréquence de résonance qui leur est propre : toute interférence avec celle-ci provoque donc un leurrage de la stabilité du capteur, ce qui amène ce dernier à envoyer des données erronées.

sonic1

C’est donc le principe des attaques menées par l’équipe Alibaba. Les chercheurs ont ainsi utilisé une « arme ultrasonique » (en gros, un système de génération d’ultrasons, réalisés à la main dans leur atelier) permettant de moduler la fréquence des sons afin qu’elle corresponde à la fréquence de résonance du capteur MEMS visé.

Une fois la fréquence de résonance atteinte, le capteur vibre et devient désorienté, car il perd sa référence stable, il envoie donc des valeurs fausse au système qui l’héberge.

sonic2

Une première démonstration assez impressionnante montre ce que l’on peut faire en piratant ainsi un casque de réalité virtuelle Oculus Rift (le sac en papier pour l’infortuné qui porterait le casque n’est pas fourni) – les chercheurs ont montré une attaque analogue sur un HTC Vive ou des lunettes Hololens.

Bon, vous me direz « et alors » ? Alors… il y a pléthore de systèmes qui pourraient être piratés de cette manière. Les auteurs ont ainsi démontré des attaques sur un smartphone (ici le Samsung Galaxy S7)

Sur un drone de type DJI Phantom (ici sur la caméra, mais également sur les hélices)

Ils ont également montré qu’un hoverboard électrique auto-équilibré (en gros une skateboard muni de gyroscopes et capables de se stabiliser tout seul), semblant initialement immunisé, devenait vulnérable si on pratiquait une petite incision sur sa coque (plastique), afin de laisser passer les ultrasons – on peut aussi utiliser des émetteurs ultrasoniques de forte puissance. Et que pendant l’attaque, il oscillait d’avant en arrière – on imagine ce que cela pourrait donner sur la route.

Car potentiellement, une telle attaque serait applicable au piratage d’une voiture connectée – soit par exemple en provoquant le déclenchement intempestif des air bags (non, pas très agréable quand on conduit) soit en destabilisant des véhicules autonomes pour provoquer des accidents. C’est d’autant plus ennuyeux que le matériel nécessaire ne relève pas de la science des particules – le générateur utilisé a coûté aux chercheurs la somme dérisoire de 320$ !

sonic7

Heureusement, les parades sont identifiées : on peut ainsi protéger les MEMS des sons parasites provenant de l’extérieur par des revêtements isolants, utiliser un logiciel de surveillance et de contremesure permettant de détecter puis de contrer tout émission sonore par des mécanismes de réduction active de bruit (en gros on envoie une longueur d’onde opposée – c’est le principe des casques réducteurs de bruit). Mais la meilleure parade réside dans l’utilisation de MEMS de nouvelle génération peu sensibles aux stimuli externes, comme les gyroscopes SD-BAW pour « substrate-decoupled bulk-acoustic wave dont le principe de fonctionnement est décrit dans ce document .

Cette attaque a l’intérêt de mettre en évidence la vulnérabilité des équipements professionnels ou grand public ; on trouvera toujours en effet une faille, un nouveau mode d’attaque, une vulnérabilité exploitable. Il est donc indispensable, en tout cas pour les équipements critiques ou militaires, de considérer l’aspect sécurité, et de ne pas considérer qu’une transposition directe du monde civil au monde professionnel ou militaire doit être la règle…

fan3

Tout le monde le sait : le meilleur moyen de protéger un ordinateur hébergeant des données sensibles, est de le déconnecter physiquement de tout réseau. C’est ce que l’on appelle « l’air-gap » : l’ordinateur ne possède aucune connexion d’aucune sorte, et est ainsi protégé de toute intrusion… en théorie. C’est évidemment indispensable dès lors que des réseaux d’ordinateurs spécifiques protégés doivent être mis en place : communications militaires, monde bancaire, mais aussi (et cela fera l’objet un article prochain) les réseaux de contrôle ou d’automates industriels critiques (SCADA), qui sont aujourd’hui une vulnérabilité majeure de nos infrastructures (ce sera pour une autre fois).

Car évidemment, dès lors que l’on développe un système de protection, les adversaires cherchent à le contourner. Pour pirater un ordinateur « air-gapped », plusieurs techniques ont déjà été examinées. La plus connue et la plus immédiate est l’interception des ondes électromagnétiques (nous parlerons un jour du système Cottonmouth-I de la NSA), mais il existe d’autres techniques plus exotiques comme l’utilisation et le détournement des patterns dans la chaleur émise par le PC.

fan5

On peut ainsi mentionner un système appelé BitWhisper et développé par des chercheurs de l’université Ben Gurion de Jérusalem, qui utilise l’émission de chaleur de l’ordinateur ciblé ainsi que les senseurs thermiques internes pour intercepter (et communiquer) des informations critiques comme des mots de passe ou clés de sécurité. Les chercheurs ont ainsi montré qu’ils pouvaient intercepter des commandes d’une machine air-gapped – voir la vidéo ci-dessous. En l’occurrence, ils arrivent à faire passer une information entre deux machines non physiquement connectées par le détournement des informations thermiques, arrivant ainsi à contrôler un jouet lance-missile.

Cette technique utilise les fluctuations de température de la carte-mère, et détourne le déclenchement par senseurs internes des ventilateurs permettant le refroidissement. Il s’agit d’un malware (qu’il faut donc implanter sur la cible, ce qui constitue une limite de l’exercice, je le concède), qui utilise, un peu comme un code morse, le déclenchement des senseurs de température interne pour transmettre de l’information à l’ordinateur espion. En pilotant le senseur pour permettre une augmentation de 1°C sur une certaine période, l’ordinateur receveur comprend « 1 ». En permettant la restauration de la température à son niveau initial sur la même période, le receveur comprend « 0 ». C’est long, c’est fastidieux mais c’est suffisant pour récupérer ou transmettre de l’information.

fan4

Ce logiciel va même jusqu’à prendre en compte les fluctuations normales de température afin de s’y « fondre » pour qu’un observateur externe ne puisse pas comprendre qu’une attaque a lieu. Un ordinateur infecté par bitWhisper envoie également un « ping » thermique par ses senseurs, de manière à écouter ses voisins et engager une communication avec un autre ordinateur infecté, et ce dans les deux sens (écoute des données, envoi de commandes). L’article est disponible ici.

Ce sont ces mêmes chercheurs de Ben Gurion qui viennent de mettre au point une nouvelle technique fondée sur l’écoute des ventilateurs de refroidissement du PC. Elle repose sur l’analyse des émissions sonores et de leurs variations ; car si un PC protégé ne possède généralement pas d’enceintes (et que son haut-parleur interne doit être désactivé), il comprend plusieurs ventilateurs : sur la carte mère, le châssis, l’alimentation, … Tous ces ventilateurs génèrent une fréquence sonore (liée à la fréquence de passage des pales), qui augmente avec la vitesse de rotation du ventilateur.

L’idée a alors consisté à développer un nouveau malware, qui va générer du code binaire à partir de la fréquence du ventilateur : 0 pour 1000 rpm, 1 pour 1600 rpm. Un receveur placé à proximité, comme un smartphone, en l’occurrence un Samsung Galaxy S4  avec une fréquence d’échantillonnage de 44.1Hz (voir le dispositif expérimental ci-dessous) va écouter ce code pour transmettre les données piratées. Le malware s’appelle Fansmitter ; il permet de transmettre jusqu’à une distance de 8m l’information à un système de réception à un taux de 900bits/h.

fan1

Il permet même d’utiliser des différences de fréquences sonores de 100Hz pour générer la différence entre le 0 et le 1, afin d’éviter qu’un observateur dans la pièce puisse se rendre compte de l’attaque (alors que le receveur est capable de le faire, même si la pièce est bruitée – en l’occurrence, dans le test effectué par l’équipe de recherche menée par Mordechai Guri, la pièce comportait plusieurs serveurs, un niveau de bruit ambiant habituel et un système de climatisation actif). L’article original peut être téléchargé ici.

Tout ceci permet de montrer qu’un ordinateur air-gapped n’est intrinsèquement pas à l’abri. En tout cas, tout malware pourra exploiter les failles qui sont de toute façon inhérentes au fonctionnement d’un ordinateur. Le seul bémol à ce constat est la nécessité d’introduire un malware dans l’ordinateur ciblé, ce qui est une véritable barrière d’entrée. Une fois celle-ci passée, c’est hélas trop tard.